Learn More
The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant(More)
Keywords: High-throughput Materials genomics AFLOWLIB VASP a b s t r a c t The Automatic-Flow (AFLOW) standard for the high-throughput construction of materials science electronic structure databases is described. Electronic structure calculations of solid state materials depend on a large number of parameters which must be understood by researchers, and(More)
Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic 'confusion' obstructs crystalline(More)
The continued advancement of science depends on shared and reproducible data. In the field of computational materials science and rational materials design this entails the construction of large open databases of materials properties. To this end, an Application Program Interface (API) following REST principles is introduced for the AFLOWLIB.org materials(More)
The quantum dynamics of electrons in bulk states is investigated by scanning tunneling microscopy and spectroscopy on a Ag(100) surface. By measuring conductance maps above a threshold voltage, we observe standing waves at step edges and defects. We interpret these to originate from electrons in a bulk band edge at the point. From the spatially decaying(More)
The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction(More)
Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property(More)
Novel surface coordination nanostructures based on cyanosexiphenyl molecules are assembled on a gold surface and investigated by scanning tunneling microscopy and density functional theory. Their formation can be tuned by varying the surface temperature during deposition. Diffusing gold adatoms act as coordination centers for the cyano groups present on one(More)
A single molecule composed of three linked moieties can function as an amplifier of electrical current, when certain conditions are met by the molecular orbitals of the three component parts. This device should exhibit power gain at appropriate voltages. In this work, we will explain a plausible mechanism by which this device should work, and present its(More)
  • 1