Cormac O Flynn

Learn More
The complex mechanical properties of skin have been the subject of much study in recent years. Several experimental methods developed to measure the mechanical properties of skin in vivo, such as suction or torsion, are unable to measure skin's anisotropic characteristics. An experiment characterising the mechanical properties of in vivo human skin using a(More)
The healing of wounds is a complex process and the contraction of the resulting scar can have a negative impact on the neighbouring skin. A finite element model of skin simulating the contraction of a scar and deformation of the surrounding skin is presented. The skin is represented by an orthotropic-viscoelastic constitutive law, which is validated against(More)
BACKGROUND/PURPOSE Human skin is a complex multilayered material. Although there are many numerical models of skin in existence, which accurately simulate several of its complex mechanical characteristics, there are very few models that simulate wrinkling - a phenomenon common to all human skin. The purpose of this study was to develop a multilayer model of(More)
Human skin is a complex multi-layer material. Many existing numerical skin models accurately simulate several of its complex mechanical characteristics. However, few models simulate wrinkling - a phenomenon common to all human skin. In this study, a multi-layer model of skin was developed to simulate wrinkling. The model consisted of the stratum corneum,(More)
Determining the mechanical properties of an individual’s skin is important in the fields of pathology, biomedical device design, and plastic surgery. To address this need, we present a finite element model that simulates the skin of the anterior forearm and posterior upper arm under a rich set of three-dimensional deformations. We investigated the(More)
Characterising the mechanical properties of human facial skin is a challenging but important endeavour with applications in biomedicine, surgery simulation, forensics, and animation. Many existing computer models of the face are not based on in vivo facial skin deformation data but rather on experiments using in vitro facial skin or other soft tissues. The(More)
One of the outward signs of the aging process of human skin is the increased appearance of wrinkles on its surface. Clinical studies show that the increased frequency of wrinkles with age may be attributed to changes in the composition of the various layers of skin, leading to a change in mechanical properties. A parameter study was performed on a(More)
The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin's mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional(More)
AIM The achievement of a well-healed wound depends on many factors including its size and location on the body and the properties of the skin. The aim of this study is to develop computational wound closure models and compare the results of using different excision shapes. METHODS Finite element models were developed that simulated the incision, excision(More)
Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the face is proposed in which the skin is(More)