Corinne Mercier

Learn More
The intracellular parasite Toxoplasma gondii develops within a nonfusogenic vacuole containing a network of elongated nanotubules that form connections with the vacuolar membrane. Parasite secretory proteins discharged from dense granules (known as GRA proteins) decorate this intravacuolar network after invasion. Herein, we show using specific gene knockout(More)
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data(More)
Following invasion into the host cell, the protozoan Toxoplasma gondii secretes a variety of proteins that modify the parasitophorous vacuole. Within the vacuole, the 28-kDa dense granule protein known as GRA2 is specifically targeted to the tubulovesicular network which forms connections with the vacuolar membrane. To investigate the importance of GRA2, we(More)
Toxoplasma gondii (Tg) is an obligate intracellular protozoan parasite that is an important opportunistic pathogen in humans. To provide additional tools for molecular genetic analysis, we have developed a set of vectors for DNA transformation in Tg based on selection with the antibiotic phleomycin (Ph). These new vectors rely on the flanking sequences from(More)
Type II Toxoplasma gondii KU80 knockouts (Δku80) deficient in nonhomologous end joining were developed to delete the dominant pathway mediating random integration of targeting episomes. Gene targeting frequency in the type II Δku80 Δhxgprt strain measured at the orotate (OPRT) and the uracil (UPRT) phosphoribosyltransferase loci was highly efficient. To(More)
Following secretion into the parasitophorous vacuole, dense granule proteins, referred to as GRA proteins, are targeted to different locations including a complex of tubular membranes that are connected with the vacuolar membrane. To further define the formation of this intravacuolar network, we have investigated the secretion, trafficking and membrane(More)
Isolates of Toxoplasma gondii, which is responsible for a wide range of clinical manifestations are grouped into three clonal lineages of different virulence in mice. However, it is not clear whether this genotypic pattern is associated with the clinical profile of the disease in humans nor is the geographical distribution of the genotypes known. This is(More)
An enzyme-linked immunosorbent assay (ELISA) using two recombinant antigens of Toxoplasma gondii (GRA1 and GRA6 Nt) was developed in order to differentiate between pregnant women with a serological profile of recently acquired infection and those with chronic infection. Both proteins were expressed in Escherichia coli as glutathione S-transferase fusion(More)
This work describes the molecular characterization of GRA6, a novel Toxoplasma gondii dense granule antigen of 32 kDa. cDNA clones encoding this protein were isolated using a rat serum directed against an HPLC fraction enriched in the protein GRA5. Cross-reactivity between GRA5 and GRA6 was demonstrated by production of sera against the recombinant GRA5(More)
The Toxoplasma gondii protein GRA2 is secreted into the parasite-containing vacuole where it is rapidly and specifically targeted to a network of membranous tubules that connect with the vacuolar membrane. To examine the molecular basis of this association, we expressed an HA9 epitope-tagged form of GRA2 by stable transformation of Toxoplasma. GRA2-HA9 was(More)