Learn More
Salicylic acid (SA) is a plant signaling molecule that mediates the induction of defense responses upon attack by a variety of pathogens. Moreover, it antagonizes gene induction by the stress signaling molecule jasmonic acid (JA). Several SA-responsive genes are regulated by basic/leucine zipper-type transcription factors of the TGA family. TGA factors(More)
In higher plants, activating sequence-1 (as-1) of the cauliflower mosaic virus 35 S promoter mediates both salicylic acid (SA)- and auxin-inducible transcriptional activation. Originally found in promoters of several viral and bacterial plant pathogens, as-1-like elements are also functional elements of plant promoters activated in the course of a defense(More)
In higher plants, as-1-like cis elements mediate auxin- and salicylic acid-inducible transcription. Originally found in viral and T-DNA promoters, they are also functional elements of plant promoters activated during the defence response against pathogens. Tobacco bZIP transcription factor TGA1a was the first recombinant protein shown to bind to as-1. cDNAs(More)
Verticillium longisporum is a soil-borne vascular pathogen that causes reduced shoot growth and early senescence in Arabidopsis (Arabidopsis thaliana). Here, we report that these disease symptoms are less pronounced in plants that lack the receptor of the plant defense hormone jasmonic acid (JA), CORONATINE INSENSITIVE1 (COI1). Initial colonization of the(More)
The plant signaling molecule salicylic acid (SA) and/or xenobiotic chemicals like the auxin mimic 2,4-D induce transcriptional activation of defense- and stress-related genes that contain activation sequence-1 (as-1)-like cis-elements in their promoters. as-1-like sequences are recognized by basic/leucine zipper transcription factors of the TGA family.(More)
Salicylic acid (SA) is a crucial internal signaling molecule needed for the induction of plant defense responses upon attack of a variety of pathogens. Basic leucine zipper transcription factors of the TGA family bind to activating sequence-1 (as-1)-like elements which are SA-responsive cis elements found in promoters of 'immediate early' and 'late'(More)
Salicylic acid (SA), a hormone essential for defense against biotrophic pathogens, triggers increased susceptibility of plants against necrotrophic attackers by suppressing the jasmonic acid-ethylene (ET) defense response. Here, we show that this disease-promoting SA effect is abolished in plants lacking the three related TGACG sequence-specific binding(More)
Verticillium longisporum is a soil-borne vascular pathogen causing economic loss in rape. Using the model plant Arabidopsis this study analyzed metabolic changes upon fungal infection in order to identify possible defense strategies of Brassicaceae against this fungus. Metabolite fingerprinting identified infection-induced metabolites derived from the(More)
Glutaredoxins are small heat-stable oxidoreductases that transfer electrons from glutathione (GSH) to oxidized cysteine residues, thereby contributing to protein integrity and regulation. In Arabidopsis thaliana, floral glutaredoxins ROXY1 and ROXY2 and pathogen-induced ROXY19/GRX480 interact with bZIP transcription factors of the TGACG (TGA) motif-binding(More)
Plant responses to wounding are part of their defense responses against insects, and are tightly regulated. The isoleucin conjugate of jasmonic acid (JA-Ile) is a major regulatory molecule. We have previously shown that inositol polyphosphate signals are required for defense responses in Arabidopsis; however, the way in which inositol polyphosphates(More)