Corinna Asang

Learn More
The integrated human immunodeficiency virus type 1 (HIV-1) genome is transcribed in a single pre-mRNA that is alternatively spliced into more than 40 mRNAs. We characterized a novel bidirectional exonic splicing enhancer (ESE) that regulates the expression of the HIV-1 env, vpu, rev, and nef mRNAs. The ESE is localized downstream of the vpu-, env-, and(More)
The guanosine-adenosine-rich exonic splicing enhancer (GAR ESE) identified in exon 5 of the human immunodeficiency virus type-1 (HIV-1) pre-mRNA activates either an enhancer-dependent 5' splice site (ss) or 3' ss in 1-intron reporter constructs in the presence of the SR proteins SF2/ASF2 and SRp40. Characterizing the mode of action of the GAR ESE inside the(More)
RNA duplex formation between U1 snRNA and a splice donor (SD) site can protect pre-mRNA from degradation prior to splicing and initiates formation of the spliceosome. This process was monitored, using sub-genomic HIV-1 expression vectors, by expression analysis of the glycoprotein env, whose formation critically depends on functional SD4. We systematically(More)
Usage of the HIV-1 major 5' splice site D1 is a prerequisite for generation of all spliced viral mRNAs encoding essential regulatory and structural proteins. We set out to determine whether flanking sequences ensure D1-activation. We found that an exonic splicing enhancer function is exerted by the region upstream of D1, which is crucially required for its(More)
  • 1