Learn More
We have examined the force-velocity characteristics of tetanically activated human adductor pollicis working in vivo, in the fresh and fatigued states. The increase in force in response to stretch was divided into two major components. The first, steady, component persisted after the stretch and is concluded not to be a function of active cycling(More)
The purpose of the present study was to relate the expected inter-subject variability in voluntary drive of the knee extensor muscles during a sustained isometric contraction to the changes in firing rates of single motor units. Voluntary activation, as established with superimposed electrical stimulation was high (range: 91–99%, n=8) during a short maximal(More)
Whole-Body vibration (WBV) may lead to muscle contractions via reflex activation of the primary muscle spindle (Ia) fibres. WBV has been reported to increase muscle power in the short term by improved muscle activation. The present study set out to investigate the acute effects of a standard WBV training session on voluntary activation during maximal(More)
In a double-blind, placebo, controlled study, we investigated the acute effects of short-term oral creatine supplementation (20 g · day−1 for 6 days) on muscle activation, fatigue and recovery of the m. quadriceps femoris during electrical stimulation, and on maximal performance during sprint cycling. The quadriceps muscles of 23 well-trained rowers were(More)
The purpose of the present study was to investigate whether 11 weeks of whole body vibration (WBV) training applied in a way that is commonly seen in practice, i.e. without additional loads, would improve muscle activation and/or contractile properties of the knee extensor muscles and counter movement jump height in healthy subjects. Ten subjects belonging(More)
 The proximal and distal compartments of rat medial gastrocnemius muscle are dominated, respectively by, fast-twitch oxidative and fast twitch glycolytic fibres. In the present study it was hypothesized that repetitive in situ activation with an intact blood supply would cause greater declines in maximal tetanic force, compound action potential (CAP)(More)
The purpose of the present study was to investigate the effect of muscle temperature on the force/velocity relationship of electrically activated human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different temperatures, the calculated muscle temperatures were 37.1, 31.4, 25.6 and 22.2°C. At 22.2°C maximal(More)
The purpose of the study was to obtain force/velocity relationships for electrically stimulated (80 Hz) human adductor pollicis muscle (n = 6) and to quantify the effects of fatigue. There are two major problems of studying human muscle in situ; the first is the contribution of the series elastic component, and the second is a loss of force consequent upon(More)
We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n=9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise(More)
Recently, fatigability and muscle oxygen consumption (mVO2) during sustained isometric contractions were found to be less at shorter (30° knee angle; 0° = full extension) compared to longer knee extensor muscle lengths (90°) and, at low torques, less in the rectus femoris (RF) muscle than in the vastus lateralis and medialis. In the present study we(More)