Corina S. Pasareanu

Learn More
Finite-state verification techniques, such as model checking, have shown promise as a cost-effective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a finite-state model that approximates the executable behavior of(More)
Modern software systems, which often are concurrent and manipulate complex data structures must be extremely reliable. We present a novel framework based on symbolic execution, for automated checking of such systems. We provide a two-fold generalization of traditional symbolic execution based approaches. First, we define a source to source translation to(More)
We show how model checking and symbolic execution can be used to generate test inputs to achieve structural coverage of code that manipulates complex data structures. We focus on obtaining branch-coverage during unit testing of some of the core methods of the red-black tree implementation in the Java <b>TreeMap</b> library, using the Java PathFinder model(More)
We describe an approach to testing complex safety critical software that combines unit-level symbolic execution and system-level concrete execution for generating test cases that satisfy user-specified testing criteria. We have developed Symbolic Java PathFinder, a symbolic execution framework that implements a non-standard bytecode interpreter on top of(More)
The popularity of object-oriented programming has led to the wide use of container libraries. It is important for the reliability of these containers that they are tested adequately. We describe techniques for automated test input generation of Java container classes. Test inputs are sequences of method calls from the container interface. The techniques(More)
Compositional verification is a promising approach to addressing the state explosion problem associated with model checking. One compositional technique advocates proving properties of a system by checking properties of its components in an assume-guarantee style. However, the application of this technique is difficult because it involves non-trivial human(More)
Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. The typical approach to verifying properties of software components is to check them for all possible environments. In reality, however, a component is only required to satisfy properties in specific environments. Unless these(More)
Symbolic PathFinder (SPF) is a software analysis tool that combines symbolic execution with model checking for automated test case generation and error detection in Java bytecode programs. In SPF, programs are executed on symbolic inputs representing multiple concrete inputs and the values of program variables are represented by expressions over those(More)