Learn More
Synaptic plasticity underlies the adaptability of the mammalian brain, but has been difficult to study in living animals. Here we imaged the synapses between pre- and postganglionic neurons in the mouse submandibular ganglion in vivo, focusing on the mechanisms that maintain and regulate neurotransmitter receptor density at postsynaptic sites. Normally,(More)
Fluorescent molecular tomographic (FMT) imaging can noninvasively monitor molecular function in living animals using specific fluorescent probes. However, macroscopic imaging methods such as FMT generally exhibit low anatomical details. To overcome this, we report a quantitative technique to image both structure and function by combining FMT and magnetic(More)
The polypeptide snake toxin alpha-bungarotoxin (BTX) has been used in hundreds of studies on the structure, function, and development of the neuromuscular junction because it binds tightly and specifically to the nicotinic acetylcholine receptors (nAChRs) at this synapse. We show here that BTX also binds to and blocks a subset of GABA(A) receptors(More)
Much of what is currently known about the behavior of synapses in vivo has been learned at the mammalian neuromuscular junction, because it is large and accessible and also its postsynaptic acetylcholine receptors (AChRs) are readily labeled with a specific, high-affinity probe, alpha-bungarotoxin (BTX). Neuron-neuron synapses have thus far been much less(More)
To examine the role of retrograde signals on synaptic maintenance, we inhibited protein synthesis in individual postsynaptic cells in vivo while monitoring presynaptic terminals. Within 12 h, axon terminals begin to atrophy and withdraw from normal postsynaptic sites. Structural similarities between this process and naturally occurring synapse elimination(More)
  • 1