Learn More
—The Jensen's inequality plays a crucial role in the analysis of time-delay and sampled-data systems. Its conservatism is studied through the use of the Grüss Inequality. It has been reported in the literature that fragmentation (or partitioning) schemes allow to empirically improve the results. We prove here that the Jensen's gap can be made arbitrarily(More)
Stability analysis and control of linear impulsive systems is addressed in a hybrid framework, through the use of continuous-time time-varying discontinuous Lyapunov functions. Necessary and sufficient conditions for stability of impulsive systems with periodic impulses are first provided in order to set up the main ideas. Extensions to stability of(More)
— This paper introduces a new model for disease outbreaks. This model describes the disease evolution through a system of nonlinear differential equations with distributed-delay. The main difference between classical SIR-model resides in the fact that the recovery rate of the population is expressed as a distributed-delay term modeling the time spent being(More)
This paper proposes a supervisory control structure for networked systems with time-varying delays. The control structure, in which a supervisor triggers the most appropriate controller from a multi-controller unit, aims at improving the closed-loop performance relative to what can be obtained using a single robust controller. Our analysis considers average(More)
A new functional-based approach is developed for the stability analysis of linear impulsive systems. The new method, which introduces looped-functionals, considers non-monotonic Lyapunov functions and leads to LMIs conditions devoid of exponential terms. This allows one to easily formulate dwell-times results, for both certain and uncertain systems. It is(More)
Copositive linear Lyapunov functions are used along with dissipativity theory for stability analysis and control of uncertain linear positive systems. Unlike usual results on linear systems, linear supply-rates are employed here for robustness and performance analysis using L 1-and L ∞-gains. Robust stability analysis is performed using Integral Linear(More)
Introduction Stability analysis and norm computation Robust stability analysis Examples Conclusion Outline Introduction Stability analysis and norm computation Robust stability analysis Conclusion and Future Works C. Briat [KTH / ] 2/22 Introduction Stability analysis and norm computation Robust stability analysis Examples Conclusion Introduction C. Briat(More)
—New sufficient conditions for the characterization of dwell-times for linear impulsive systems are proposed and shown to coincide with continuous decrease conditions of a certain class of looped-functionals, a recently introduced type of functionals suitable for the analysis of hybrid systems. This approach allows to consider Lyapunov functions that evolve(More)
— It is shown that the queuing delay involved in the congestion control algorithm is state-dependent and does not depend on the current time. Then, using an accurate formulation for buffers, networks with arbitrary topologies can be built. At equilibrium, our model reduces to the widely used setup by Paganini et al. Using this model, the delay-derivative is(More)
Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes,(More)