It is proved here that the Jensen's gap can be made arbitrarily small provided that the order of uniform fragmentation is chosen sufficiently large.Expand

Copositive linear Lyapunov functions are used along with di ssipativity theory for stability analysis and control of uncertain linear positive systems. Unlike usual results on linear systems, linear… Expand

This paper addresses the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics, and demonstrates that the stability properties of a wide class of biological networks can be assessed from sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability.Expand

Copositive linear Lyapunov functions are used along with dissipativity theory for stability analysis and control of uncertain linear positive systems and the obtained results are expressed in terms of robust linear programming problems that are equivalently turned into finite dimensional ones using Handelman's Theorem.Expand