Learn More
This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting "spatial pyramid" is a simple and computationally efficient extension of(More)
The aim of this paper is to address recognition of natural human actions in diverse and realistic video settings. This challenging but important subject has mostly been ignored in the past due to several problems one of which is the lack of realistic and annotated video datasets. Our first contribution is to address this limitation and to investigate the(More)
In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector [Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest(More)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion(More)
Recently dense trajectories were shown to be an efficient video representation for action recognition and achieved state-of-the-art results on a variety of datasets. This paper improves their performance by taking into account camera motion to correct them. To estimate camera motion, we match feature points between frames using SURF descriptors and dense(More)
The paper gives a snapshot of the state of the art in affine covariant region detectors, and compares their performance on a set of test images under varying imaging conditions. Six types of detectors are included: detectors based on affine normalization around Harris [24, 34] and Hessian points [24], as proposed by Mikolajczyk and Schmid and by(More)
This paper improves recent methods for large scale image search. State-of-the-art methods build on the bag-of-features image representation. We, first, analyze bag-of-features in the framework of approximate nearest neighbor search. This shows the suboptimality of such a representation for matching descriptors and leads us to derive a more precise(More)
We address the problem of image search on a very large scale, where three constraints have to be considered jointly: the accuracy of the search, its efficiency, and the memory usage of the representation. We first propose a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a(More)
This paper introduces a product quantization-based approach for approximate nearest neighbor search. The idea is to decompose the space into a Cartesian product of low-dimensional subspaces and to quantize each subspace separately. A vector is represented by a short code composed of its subspace quantization indices. The euclidean distance between two(More)
This paper introduces a video representation based on dense trajectories and motion boundary descriptors. Trajectories capture the local motion information of the video. A dense representation guarantees a good coverage of foreground motion as well as of the surrounding context. A state-of-the-art optical flow algorithm enables a robust and efficient(More)