Coralie de Hemptinne

Learn More
An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing(More)
Deep brain stimulation (DBS) is increasingly applied for the treatment of brain disorders, but its mechanism of action remains unknown. Here we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients,(More)
OBJECTIVE Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic(More)
Local field potentials (LFP) recorded from the subthalamic nucleus in patients with Parkinson's disease (PD) demonstrate prominent oscillations in the beta (13-30 Hz) frequency range, and reduction of beta band spectral power by levodopa and deep brain stimulation (DBS) is correlated with motor symptom improvement. Several features of beta activity have(More)
OBJECTIVE Essential tremor (ET) is characterized by an action tremor believed to be due to excessive theta-alpha activity in the cerebello-thalamo-cortical system. This study aimed to test the hypothesis that therapeutic thalamic stimulation in patients with ET decreases theta-alpha oscillatory activity in primary motor (M1) and sensory (S1) cortices. (More)
The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists,(More)
BACKGROUND Subthalamic nucleus deep brain stimulation (DBS) is an alternative target choice for treating primary dystonia, but little is known about the most effective programming parameters. OBJECTIVE Here we prospectively evaluate the effect of low versus high frequency subthalamic nucleus DBS in patients with predominantly cervical or upper extremity(More)
UNLABELLED Hyperkinetic states are common in human movement disorders, but their neural basis remains uncertain. One such condition is dyskinesia, a serious adverse effect of medical and surgical treatment for Parkinson's disease (PD). To study this, we used a novel, totally implanted, bidirectional neural interface to obtain multisite long-term recordings.(More)
OBJECTIVE Parkinson disease (PD) can be difficult to diagnose and treat. Development of a biomarker for PD would reduce these challenges by providing an objective measure of disease. Emerging theories suggest PD is characterized by excessive synchronization in the beta frequency band (∼20Hz) throughout basal ganglia-thalamocortical loops. Recently we showed(More)
IMPORTANCE Isolated dystonia and Parkinson disease (PD) are disorders of the basal gangliothalamocortical network. They have largely distinct clinical profiles, but both disorders respond to deep brain stimulation (DBS) in the same subcortical targets using similar stimulation paradigms, suggesting pathophysiologic overlap. We hypothesized that, similar to(More)