Coralie de Hemptinne

Learn More
Deep brain stimulation (DBS) is increasingly applied for the treatment of brain disorders, but its mechanism of action remains unknown. Here we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients,(More)
An important mechanism for large-scale interactions between cortical areas involves coupling between the phase and the amplitude of different brain rhythms. Could basal ganglia disease disrupt this mechanism? We answered this question by analysis of local field potentials recorded from the primary motor cortex (M1) arm area in patients undergoing(More)
OBJECTIVE Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic(More)
Expectation of upcoming events is an essential cognitive function on which anticipatory actions are based. The neuronal basis of this prospective representation is poorly understood. We trained rhesus monkeys in a smooth-pursuit task in which the direction of upcoming target motion was indicated using a color cue. Under these conditions, directional(More)
The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists,(More)
The timing of an upcoming event depends on two factors: its temporal position, proximal or distal with respect to the present moment, and the unavoidable stochastic variability around this temporal position. We searched for a general mechanism that could describe how these two factors influence the anticipation of an upcoming event in an oculomotor task.(More)
A classic paradigm to study anticipatory pursuit consists in training monkeys to look at a target that appears in the center of a visual display, disappears during a short "gap" period, then reappears and immediately starts to move. To determine the role of prior directional information on anticipatory pursuit eye movements, we trained rhesus monkeys to(More)
During visual pursuit of a moving target, expected changes in its trajectory often evoke anticipatory smooth pursuit responses. In the present study, we investigated characteristics of anticipatory smooth pursuit decelerations before a change or the end of a target trajectory. Healthy humans had to pursue with the eyes a target moving along a circular path(More)
Serotonin (5-hydroxytryptamine) is a neurotransmitter crucial for cardiovascular, gastrointestinal, and brain function. It is also involved in several aspects of behavior and associated with a variety of personality disorders in humans. Its dual role as a crucial element in vital physiological functions (strictly evolutionary conserved) and in traits that(More)
BACKGROUND Subthalamic nucleus deep brain stimulation (DBS) is an alternative target choice for treating primary dystonia, but little is known about the most effective programming parameters. OBJECTIVE Here we prospectively evaluate the effect of low versus high frequency subthalamic nucleus DBS in patients with predominantly cervical or upper extremity(More)