Coralie Fouquet

Learn More
The function of the nervous system depends on the precision of axon wiring during development. Previous studies have demonstrated that Slits, a family of secreted chemorepellent proteins, are crucial for the proper development of several major forebrain tracts. Mice deficient in Slit2 or, even more so, in both Slit1 and Slit2 have defects in multiple axonal(More)
Myotonic dystrophy (DM) is caused by a CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. A very high level of instability is observed through successive generations and the size of the repeat is generally correlated with the severity of the disease and with age at onset. Furthermore, tissues from DM patients exhibit somatic mosaicism(More)
The autosomal dominant mutation causing myotonic dystrophy (DM1) is a CTG repeat expansion in the 3'-UTR of the DM protein kinase (DMPK) gene. This multisystemic disorder includes myotonia, progressive weakness and wasting of skeletal muscle and extramuscular symptoms such as cataracts, testicular atrophy, endocrine and cognitive dysfunction. The mechanisms(More)
Human African trypanosomiasis (HAT) is characterized by a major deregulation of the immune system. Hypergammaglobulinemia, auto-antibodies, and immunodepression are cardinal features. Parasitemia occurs in waves due to the successive appearance of parasites with different variable glycoprotein surface antigens (VGSA). Antigenic variation enables parasites(More)
Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons toward the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning toward floor plate tissue, suggesting that additional guidance cues(More)
Odorants are detected by olfactory receptor neurons (ORNs) located in the olfactory epithelium. In mice, ORNs expressing the same odorant receptor (OR) project to a single glomerulus out of 1800 in the olfactory bulb (OB). It has been proposed that OR-derived cAMP signals guide ORN axons to their glomeruli rather than OR themselves. Recently, it has also(More)
Monoamine oxidases A (MAOA) and B (MAOB) are key players in the inactivation pathway of biogenic amines. Their cellular localization has been well established in the mature brain, but nothing is known concerning the localization of both enzymes during development. We have combined in situ hybridization and histochemistry to localize MAOA and MAOB in the(More)
BACKGROUND & AIMS Ras oncoproteins are mutated in about 50% of human colorectal cancers, but their precise role in tumor initiation or progression is still unclear. METHODS This study presents transgenic mice that express K-ras(V12G), the most frequent oncogenic mutation in human tumors, under control of the murine villin promoter in epithelial cells of(More)
In humans, thyroid hormone deficiency during development causes severe neurological diseases but the underlying mechanisms are unclear. We have examined the effects of thyroid hormones on the development of somatosensory thalamocortical projections, by inducing hypothyroidism in rats by methimazole treatment at embryonic day 13 and subsequent thyroidectomy(More)
Development of neuronal circuits is controlled by evolutionarily conserved axon guidance molecules, including Slits, the repulsive ligands for roundabout (Robo) receptors, and Netrin-1, which mediates attraction through the DCC receptor. We discovered that the Robo3 receptor fundamentally changed its mechanism of action during mammalian evolution. Unlike(More)