Coralie Biache

Learn More
To evaluate the efficiency and the influence of thermal desorption on the soil organic compartment, contaminated soils from coking plant sites (NM and H) were compared to their counterparts treated with thermodesorption. The extractable organic matter, and the metal content and distribution with soil compartments were studied. In both thermodesorbed soils,(More)
Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic(More)
To better understand formation, functioning and evolution of a Technosol developing on a former settling pond of iron industry under forest cover, organic matter (OM) of layers along the soil profile was investigated. Spectroscopic and molecular analyses of extractable OM gave information on OM origin and state of preservation. In the surface layer, OM(More)
The sterol distributions of 9 sediment samples from the Illinois River Basin (OK and AR, USA) were examined in order to identify the source of fecal contamination. The samples were extracted with organic solvent using sonication and the fractions containing the sterols were isolated and analyzed by gas chromatography-mass spectrometry. The sterol(More)
In contaminated soils, several natural processes (biodegradation, oxidation, etc.) can induce degradation of organic pollutants. The aim of this work was to evaluate the impact of an abiotic low-temperature oxidation on a coking plant soil and its main organic constituents (coal, coke, coal tar and road asphalts) in order to understand its long term(More)
Based on the isomer stability during their formation, PAH diagnostic ratios have been extensively used to determine PAH contamination origin. Nevertheless, it is known that these isomers do not present the same physicochemical properties and that reactions occurring during the transport from an atmospheric source induce changes in the diagnostic ratios.(More)
Reactivity of polycyclic aromatic hydrocarbons (PAHs) in the subsurface is of importance to environmental assessment, as they constitute a highly toxic hazard. Understanding their reactivity in the long term in natural recovering systems is thus a key issue. This article describes an experimental investigation on the air oxidation of fluoranthene (a PAH(More)
Sewage impacted soil, sludge and water samples were studied to understand the occurrence and formation of thiosteranes and to determine the relevance of these compounds as tracers for sewage input into the environment. Soils were collected from wastewater irrigation fields (Wroclaw, Poland), water from the Nexapa River Basin (Mexico), which also received(More)
In former coal transformation plants (coking and gas ones), the major organic contamination of soils is coal tar, mainly composed of polycyclic aromatic compounds (PACs). Air oxidation of a fresh coal tar was chosen to simulate the abiotic natural attenuation impact on PAC-contaminated soils. Water-leaching experiments were subsequently performed on fresh(More)
Polycyclic aromatic hydrocarbons (PAHs) associated with two minerals (silica sand and bentonite) presenting opposite retention properties were analyzed with a thermodesorption (Td)-GC-MS coupling in order to validate this technique as a new and rapid way to evaluate the solid sorption properties. Two analysis modes were used, evolved gas analysis (EGA) and(More)