Learn More
Neurotoxic effects of methylmercury, were investigated in vitro in primary cultures of human neurons and astrocytes isolatedfrom human fetal brain and in the human neuroblastoma cell line SH-SY5Y. The protection provided by agents with antioxidant properties was tested in these cultures to examine the oxidative stress mechanism of methylmercury poisoning.(More)
Alzheimer's disease (AD) is a devastating age-related neurodegenerative disease with no specific treatment at present. Several healthy lifestyle options and over-the-counter drugs that it has been suggested delay the onset of the disease are in an experimental phase, but it is unclear whether they will have any therapeutic value against AD. We assayed(More)
The cytotoxic action of the delta- and gamma-isomers of hexachlorocyclohexane (HCH) as well as their ability to induce changes in intracellular Ca2+ homeostasis was studied in cultured rat cerebellar granule neurons. Changes in the free intracellular Ca2+ concentration ([Ca2+]i) related to Ca2+ influx and release from intracellular stores were investigated(More)
Mercury is a ubiquitous contaminant, and a range of chemical species is generated by human activity and natural environmental change. Elemental mercury and its inorganic and organic compounds have different toxic properties, but all them are considered hazardous in human exposure. In an equimolecular exposure basis organomercurials with a short aliphatic(More)
The cytotoxicity of the neurotoxic hexachlorocyclohexane (HCH) isomers alpha, beta, gamma (lindane) and delta and of the cyclodienes aldrin, endrin and alpha-endosulfan were studied in primary neuronal cultures of cerebellar granule cells. Disruption of cell membrane integrity, as indicative of cytotoxicity, was measured by propidium iodide staining.(More)
Physical exercise has become a potentially beneficial therapy for reducing neurodegeneration symptoms in Alzheimer's disease. Previous studies have shown that cognitive deterioration, anxiety and the startle response observed in 7-month-old 3xTg-AD mice were ameliorated after 6 months of free access to a running wheel. Also, alterations in synaptic response(More)
Positron emission tomography (PET) has been used extensively to evaluate the neuropathology of Alzheimer's disease (AD) in vivo. Radiotracers directed toward the amyloid deposition such as [(18)F]-FDDNP (2-(1-{6-[(2-[F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile) and [(11)C]-PIB (Pittsburg compound B) have shown exceptional value in(More)
The binding of [3H]ryanodine was determined in microsomal membrane preparations obtained from cultured cerebellar granule cells. A KD of 1 nM and a Bmax of 64 fmol/mg protein were calculated from saturation experiments. This binding was calcium dependent and maximum values were obtained at 100-300 microM Ca+2. Caffeine increased [3H]ryanodine binding only(More)
The release of [3H]arachidonic acid (ARA) was investigated from prelabelled primary cultures of hippocampal neurons and astroglial cells. The activation of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors resulted in a dose-dependent stimulation of [3H]ARA release. The half maximal effect was obtained at about 15 microM NMDA, whereas the maximum(More)
The JAK/STAT pathway is activated in response to cytokines and growth factors. In addition, oxidative stress can activate this pathway, but the causative pro-oxidant forms are not well identified. We exposed cultures of rat glia to H2O2, FeSO4, nitroprussiate, or paraquat. We assessed oxidative stress by measuring reactive oxygen species (ROS) and oxidated(More)