Learn More
Ticks are important ectoparasites of domestic and wild animals, and tick infestations economically impact cattle production worldwide. Control of cattle tick infestations has been primarily by application of acaricides which has resulted in selection of resistant ticks and environmental pollution. Herein we discuss data from tick vaccine application in(More)
Organisms in the genus Anaplasma are obligate intracellular pathogens that multiply in both vertebrate and invertebrate hosts. The type species, A. marginale, causes bovine anaplasmosis and only infects ticks and ruminants. A. phagocytophilum causes human and animal granulocytic anaplasmosis, and genetically closely related strains show a wide host range,(More)
BACKGROUND Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus)microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the(More)
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases, but the most important vectors of disease-causing pathogens in domestic and wild animals. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of(More)
The coevolution of ticks and the pathogens that they transmit has ensured their mutual survival. In these studies, we used a functional genomics approach to characterize tick genes regulated in response to Anaplasma marginale infection. Differentially regulated genes/proteins were identified by suppression-subtractive hybridization and differential in-gel(More)
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes obligate tick-transmitted intracellular organisms, Anaplasma phagocytophilum and Anaplasma marginale that multiply in both vertebrate and tick host cells. Recently, we showed that A. marginale affects the expression of tick genes that are involved in tick survival and pathogen infection and(More)
Subolesin was recently shown in vaccine and RNA interference (RNAi) studies to protect against tick infestations and to affect tick feeding, reproduction, and development as well as infection of host cells by Anaplasma marginale and A. phagocytophilum. Recent experiments provided evidence that infection of both tick and vertebrate host cells with these two(More)
Ticks are ectoparasites of wild and domestic animals, and humans. A more comprehensive understanding of tick function and the tick-pathogen interface is needed to formulate improved tick-control methods. RNA interference (RNAi) is the most widely used gene-silencing technique in ticks where the use of other methods of genetic manipulations has been limited.(More)
The gene that encodes the tick protective antigen, 4D8, was cloned from 10 species belonging to 6 genera, and the nucleotide and amino acid sequences were analyzed. 4D8 nucleotide and protein sequences were conserved among these tick species with identity/similarity between 65-98 and 60-98%, respectively. The function of 4D8 was characterized by RNA(More)
BACKGROUND The cattle ticks, Boophilus spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant B. microplus Bm86 protective antigen has been shown to protect cattle against tick infestations. Recently, the gene coding(More)