Constantinos D. Koutras

Learn More
In this paper we define and examine frame constructions for the family of many-valued modal logics introduced by M. Fitting in the '90s. Every language of this family is built on an underlying space of truth values, a Heyting algebra H. We generalize Fitting's original work by considering complete Heyting algebras as truth spaces and proceed to define a(More)
In the family of many-valued modal languages proposed by M. Fitting in 1992, every modal language is based on an underlying Heyting algebra which provides the space of truth values. The lattice of truth values is explicitly represented in the language by a set of special constants and this allows for forming weak, generalized, many-valued analogs of all(More)