Learn More
The domain of validity of standard thermodynamics and Boltzmann-Gibbs statistical mechanics is discussed and then formally enlarged in order to hopefully cover a variety of anomalous systems. The generalization concerns nonextensive systems, where nonextensivity is understood in the thermody-namical sense. This generalization was first proposed in 1988(More)
Generalizations of the three main equations of quantum physics, namely, the Schrödinger, Klein-Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an index q, are considered in such a way that the standard linear equations are recovered in the limit q→1. Interestingly, these equations present a common,(More)
The optimization of the usual entropy S 1 [p] = − du p(u) ln p(u) under appropriate constraints is closely related to the Gaussian form of the exact time-dependent solution of the Fokker-Planck equation describing an important class of normal diffusions. We show here that the optimization of the generalized entropic form S q [p] = {1 − du [p(u)] q }/(q − 1)(More)
We present a molecular dynamics test of the Central Limit Theorem (CLT) in a paradigmatic long-range-interacting many-body classical Hamiltonian system, the HMF model. We calculate sums of velocities at equidistant times along deterministic trajectories for different sizes and energy densities. We show that, when the system is in a chaotic regime(More)
Many natural and artificial systems whose range of interaction is long enough are known to exhibit (quasi)stationary states that defy the standard, Boltzmann–Gibbs statistical mechanical prescriptions. For handling such anomalous systems (or at least some classes of them), nonextensive statistical mechanics has been proposed based on the entropy Sq ≡ k (1−(More)