Constantine Katsinis

Learn More
BACKGROUND Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E) stained tissue sections based on cancer tissue texture features. METHODS Image processing of(More)
Grading of breast cancer and the subsequent treatment options are largely dependent on the pathological examination of the histology slides from the tumor tissue. Tumor grading is currently based on the spatial organization of the tissue, including the distribution of cancer cells, the morphological properties of their nuclei and the presence/absence of(More)
The performance of a multi-computer system based on the simultaneous optical multi-processor exchange bus (SOME-Bus) interconnection network is examined using queuing network models under the message-passing and distributed-shared-memory (DSM) paradigms. The SOME-Bus is a low latency, high bandwidth, ®ber-optic interconnection network which directly links(More)
1. Abstract Due to advances in fiber-optics and VLSI technology, interconnection networks which allow multiple simultaneous broadcasts are becoming feasible. The performance of a multiprocessor system based on a broadcast interconnection network is examined using analytical models and simulation under the message-passing and distributed-shared-memory(More)
Due to advances in fiber-optics and VLSI technology, interconnection networks that allow multiple simultaneous broadcasts are becoming feasible. Distributed-shared-memory implementations on such networks promise high performance even for applications with small granularity. This paper presents the architecture of one such implementation, called the(More)
Due to advances in fiber-optics and VLSI technology, interconnection networks which allow multiple simultaneous broadcasts are becoming feasible. This paper presents the multiprocessor architecture of the Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus), and examines the performance of representative algorithms for matrix operations, merging and(More)
Extrapolating technology advances in the near future, a computer architecture capable of petaflops performance will likely be based on a collection of processing nodes interconnected by a high-performance network. One possible organization would consist of thousands of inexpensive, low-power Symmetric Multiprocessor (SMP) nodes. Each node will inject data(More)