#### Filter Results:

#### Publication Year

2002

2016

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and… (More)

Recent results on the local and global properties of multisymplectic discretizations of Hamiltonian PDEs are discussed. We consider multisymplectic (MS) schemes based on Fourier spectral approximations and show that, in addition to a MS conservation law, conservation laws related to linear symmetries of the PDE are preserved exactly. We compare spectral… (More)

In this paper we develop the Lagrangian and multisymplectic structures of the Heisenberg magnet (HM) model which are then used as the basis for geometric discretizations of HM. Despite a topological obstruction to the existence of a global Lagrangian density, a local variational formulation allows one to derive local conservation laws using a version of… (More)