Learn More
Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to specifically(More)
Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe(More)
A multifunctional nanoprobe capable of targeting glioma cells, detectable by both magnetic resonance imaging and fluorescence microscopy, was developed. The nanoprobe was synthesized by coating iron oxide nanoparticles with covalently bound bifunctional poly(ethylene glycol) (PEG) polymer, which were subsequently functionalized with chlorotoxin and the(More)
Nanoparticles have been investigated as drug delivery vehicles, contrast agents, and multifunctional devices for patient care. Current nanoparticle-based therapeutic strategies for cancer treatment are mainly based on delivery of chemotherapeutic agents to induce apoptosis or DNA/siRNA to regulate oncogene expression. Here, a nanoparticle system that(More)
We report the development of a biostable methotrexate-immobilized iron oxide nanoparticle drug carrier that may potentially be used for real-time monitoring of drug delivery through magnetic resonance imaging. Methotrexate (MTX) was immobilized on the nanoparticle surface via a poly(ethylene glycol) self-assembled monolayer (PEG SAM). The cytotoxicity of(More)
We report the development and in vitro study of a nanoconjugate serving as a targeted magnetic resonance imaging (MRI) contrast enhancement agent for detection of cancer cells overexpressing the folate receptor. The nanoconjugate was synthesized by coating superparamagnetic iron oxide nanoparticles with covalently bound bifunctional poly(ethylene glycol)(More)
Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor-targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological(More)
UNLABELLED Cerenkov luminescence imaging (CLI) is an emerging new molecular imaging modality that is relatively inexpensive, easy to use, and has high throughput. CLI can image clinically available PET and SPECT probes using optical instrumentation. Cerenkov luminescence endoscopy (CLE) is one of the most intriguing applications that promise potential(More)
Converging advances in the development of nanoparticle-based imaging probes and improved understanding of the molecular biology of brain tumors offer the potential to provide physicians with new tools for the diagnosis and treatment of these deadly diseases. However, the effectiveness of promising nanoparticle technologies is currently limited by(More)