Learn More
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino(More)
The phototrophic bacterium Rhodobacter sphaeroides DSM 158 has a periplasmic nitrate reductase which is induced by nitrate and it is not repressed by ammonium or oxygen. In a Tn5 mutant lacking nitrate reductase activity, transposon insertion is localized in a 1.2 kb EcoRI fragment. A 0.6 kb BamHI-EcoRI segment of this region was used as a probe to isolate,(More)
The nitrogen cycle (N-cycle) in the biosphere, mainly driven by prokaryotes, involves different reductive or oxidative reactions used either for assimilatory purposes or in respiratory processes for energy conservation. As the N-cycle has important agricultural and environmental implications, bacterial nitrogen metabolism has become a major research topic(More)
A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344.(More)
Rhodopseudomonas capsulata E1F1 growing phototrophically in different inorganic nitrogen sources assimilated ammonia through the reactions of the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway. Addition of either methionine sulphoximine (MSX) or azaserine to N2-fixing cells resulted in the cessation of growth, which did not occur when these(More)
DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the(More)
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates nitrate under anaerobic phototrophic growth conditions. A 17 kb DNA region encoding the nitrate assimilation (nas) system of this bacterium has been cloned and sequenced. This region includes the genes coding for a putative ABC (ATP-binding cassette)-type nitrate transporter (nasFED) and the(More)
In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been(More)
Rhodobacter capsulatus E1F1 grows phototrophically with nitrate as nitrogen source. Using primers designed for conserved motifs in bacterial assimilatory nitrate reductases, a 450-bp DNA was amplified by PCR and used for the screening of a genomic library. A cosmid carrying an insert with four SalI fragments of 2.8, 4.1, 4.5, and 5.8 kb was isolated, and(More)