Conrad Barrett-Freeman

  • Citations Per Year
Learn More
We study numerically and analytically the dynamics of a sedimenting suspension of active, reproducing particles, such as growing bacteria in a gravitational field. In steady state we find a nonequilibrium phase transition between a "sedimentation" regime, analogous to the sedimentation equilibrium of passive colloids, and a "uniform" regime, in which the(More)
We present a numerical simulation study of the dynamics of filopodial growth in the presence of active transport by myosin X motors. We employ both a microscopic agent-based model, which captures the stochasticity of the growth process, and a continuum mean-field theory which neglects fluctuations. We show that in the absence of motors, filopodia growth is(More)
We study a number of non-equilibrium models of interest to both active matter and biological physicists. Using microscopic agent-based simulation as well as numerical integration of stochastic PDEs, we uncover the non-trivial behaviour exhibited when active transport, or an advection field, is added to out of equilibrium systems. When gravity is included in(More)
  • 1