Learn More
The unique opportunity to study and control electron-nuclear quantum dynamics in coupled potentials offered by the resonant inelastic X-ray scattering (RIXS) technique is utilized to unravel an anomalously strong two-electron one-photon transition from core-excited to Rydberg final states in the CO molecule. High-resolution RIXS measurements of CO in the(More)
We use x-ray emission spectroscopy to examine the influence of the intermolecular interaction on the local electronic structure of liquid water. By comparing x-ray emission spectra of the water molecule and liquid water, we find a strong involvement of the a(1)-symmetry valence-orbital in the hydrogen bonding. The local electronic structure of water(More)
300 pregnancies terminated at the Gynecological Out-patient Department of the Government Medical College, Aurangabad, India between April 1972-December 1973, were analyzed to determine the type of clients accepting the method, the reasons for medical termination of pregnancy and the extent to which objectives of the Medical Termination of Pregnancy Act has(More)
Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic(More)
An influence of static magnetic fields on the fluorescence yield spectrum of He in the vicinity of the N = 2 thresholds has been observed. The experimental results are in excellent agreement with predictions based on multichannel quantum defect theory, and it is demonstrated that the Rydberg electron l mixing due to the diamagnetic interaction is essential(More)
Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model(More)
Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent(More)
A dramatic electric field dependence has been observed in the fluorescence yield spectrum of the doubly excited states in helium, where a rich phenomenology is encountered below the threshold. Fluorescence yields of certain states can be tuned to zero, while other dipole-forbidden states are significantly enhanced, for fields much weaker than 1 kV/cm. Using(More)
With the invention of femtosecond X-ray free-electron lasers (XFELs), studies of light-induced chemical reaction dynamics and structural dynamics reach a new era, allowing for time-resolved X-ray diffraction and spectroscopy. To ultimately probe coherent electron and nuclear dynamics on their natural time and length scales, coherent nonlinear X-ray(More)