Learn More
Neural plasticity, or malleability of neuronal structure and function, is an important attribute of the mammalian forebrain and is generally thought to be a kernel of biological intelligence. In this review, we examine some reported manifestations of neural plasticity in the cardiorespiratory system and classify them into four functional categories,(More)
1. Many processes in mammalian and invertebrate central nervous systems exhibit habituation and/or sensitization of their responses to repetitive stimuli. Here, we studied the adaptive behaviours of the respiratory pattern generator in rat on repetitive vagal-afferent stimulation and compared these behaviours obtained in vivo with the reported effects of(More)
An adaptive neural network model that exhibits the optimality and homeostasis characteristics of the respiratory control system is described. Based upon the Hopfield network structure and a postulated Hebb-like respiratory synapse with correlational short-term potentiation, the model is capable of mimicking the normal ventilatory responses to exercise and(More)
To the Editor: Congestive heart failure (CHF) patients demonstrate a significant potentiation of the ventilatory response to muscular exercise under normal PaO 2 and PaCO 2 and normal exercise tolerance, and this important trait has been variously proposed as a predictor of poor prognosis. The augmented exercise hyperpnea is in contrast to the decreased(More)
Extracellular field potential (FP) recording of dendritic depolarizations evoked by afferent stimulation is widely used as a quantitative measure of excitatory synaptic transmission in brain slices in-vitro for structures with high neuronal density and regularity such as hippocampus, neocortex and cerebellum. On the other hand, FP recordings of somatic(More)
We have investigated the method of statistical averaging as a nonparametric approach to obtain a representative ventilation-perfusion (VA/Q) distribution that exemplifies the family of compatible solutions for multiple inert gas elimination data. The variability of the compatible solutions was examined by determining the standard deviation of the(More)
Repetitive stimulation of the carotid sinus nerve (CSN) elicits a short-term potentiation (STP) of the reflex response in respiratory motor output in mammals. The input-output transformation approximates a leaky integrator with a time constant of several seconds. Here, we showed that STP induced by CSN stimulation in rats was manifested in the reflex(More)
The detection of mild nonlinearities and/or state-dependent variability in otherwise linear physiological relationships is generally difficult in the presence of significant measurement errors. Conventional approaches using pooled subject data to increase the degree of freedom for statistical inference are enervated by the resultant introduction of(More)
Repetitive electrical stimulation of the carotid sinus nerve or vagus nerve in rats elicited abrupt reflex shortening or prolongation, respectively, of the inter-burst interval of phrenic nerve activity followed by exponential decay from the initial response. Removal of the stimuli resulted in transient post-stimulus rebound excitation or inhibition that(More)