Learn More
Reducing the acquisition time is important for clinical magnetic resonance imaging (MRI). Compressed sensing has recently emerged as a theoretical foundation for the reconstruction of magnetic resonance (MR) images from undersampled k-space measurements, assuming those images are sparse in a certain transform domain. However, most real-world signals are(More)
A novel image encoding approach based on linear frequency-swept excitation has been recently proposed to overcome artifacts induced by various field perturbations in single-shot echo planar imaging. In this article, we develop a new super-resolved reconstruction method for it using the concepts of local k-space and partial Fourier transform. This method is(More)
Spatiotemporal-encoding single-scan MRI method is relatively insensitive to field inhomogeneity compared to EPI method. Conjugate gradient (CG) method has been used to reconstruct super-resolved images from the original blurred ones based on coarse magnitude-calculation. In this article, a new de-convolution reconstruction method is proposed. Through(More)
Owing to its intrinsic characteristics, spatiotemporally encoded (SPEN) imaging is less sensitive to adverse effects due to field inhomogeneity in comparison with echo planar imaging, a feature highly desired for functional, diffusion, and real-time MRI. However, the quality of images obtained with SPEN MRI is still degraded by geometric distortions when(More)
PURPOSE To investigate the characteristics of nuclear Overhauser enhancement (NOE) imaging signals in the brain at 7T. METHODS Fresh hen eggs, as well as six healthy, and six C6 glioma-bearing Wistar rats were scanned using chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) and chemical exchange saturation transfer-magnetic(More)
Coherence selection gradients have been considered as indispensable for high-resolution NMR spectroscopy in inhomogeneous fields utilizing the CRAZED-type sequences. However, our experimental results demonstrate that these gradients can be omitted if an appropriate phase cycling is applied. The measured linewidth of reconstructing 1D high-resolution(More)
High-resolution NMR spectroscopy is a powerful tool for analyzing molecular structures and compositions. Line-widths of conventional liquid NMR signals are directly proportional to the overall magnetic field inhomogeneity the sample experiences. In many circumstances, spatial and temporal homogeneity of the magnetic field is degraded. In this paper, a(More)
Compared to the echo planar imaging (EPI), spatiotemporally encoded (SPEN) single-shot MRI holds better immunity to the field inhomogeneity, while retaining comparable spatial and temporal resolutions after the super-resolved reconstruction. Though various reconstruction methods have been proposed, the reconstructed SPEN images usually contain aliasing(More)
A new augmenting path based algorithm called draining algorithm is proposed for the maximum flow problem in this letter. Unlike other augmenting path based algorithms which augment gradually the flow from zero-flow to the maximum flow, the proposed algorithm drains the redundant capacities out of the network to achieve the maximum flow. Experimental results(More)
A product operator matrix is proposed to describe scalar couplings in liquid NMR. Combination of the product operator matrix and non-linear Bloch equations is employed to describe effects of chemical shift, translational diffusion, dipolar field, radiation damping, and relaxation in multiple spin systems with both scalar and dipolar couplings. A new(More)