Learn More
Transcription factors (TFs) regulate the expression of genes through sequence-specific interactions with DNA-binding sites. However, despite recent progress in identifying in vivo TF binding sites by microarray readout of chromatin immunoprecipitation (ChIP-chip), nearly half of all known yeast TFs are of unknown DNA-binding specificities, and many(More)
BACKGROUND Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. RESULTS We analyzed in(More)
FlyFactorSurvey (http://pgfe.umassmed.edu/TFDBS/) is a database of DNA binding specificities for Drosophila transcription factors (TFs) primarily determined using the bacterial one-hybrid system. The database provides community access to over 400 recognition motifs and position weight matrices for over 200 TFs, including many unpublished motifs. Search(More)
AGAMOUS-like-15 (AGL15) is a member of the MADS-domain family of DNA-binding regulatory factors that accumulates preferentially in tissue developing in an embryonic mode. To better understand how AGL15 functions, we developed a chromatin immunoprecipitation (ChIP) approach to isolate genes regulated directly by AGL15. ChIP allows purification of in vivo(More)
Zinc-finger nucleases (ZFNs) allow targeted gene inactivation in a wide range of model organisms. However, construction of target-specific ZFNs is technically challenging. Here, we evaluate a straightforward modular assembly-based approach for ZFN construction and gene inactivation in zebrafish. From an archive of 27 different zinc-finger modules, we(More)
AGL15 is an Arabidopsis thaliana MADS-domain regulatory factor that not only preferentially accumulates during embryogenesis but is also expressed at lower levels after the completion of germination. To better understand the control of expression of AGL15, a series of 5' and internal deletions within the regulatory regions of AGL15 was generated. Regions(More)
Cys(2)-His(2) zinc finger proteins (ZFPs) are the largest family of transcription factors in higher metazoans. They also represent the most diverse family with regards to the composition of their recognition sequences. Although there are a number of ZFPs with characterized DNA-binding preferences, the specificity of the vast majority of ZFPs is unknown and(More)
Zinc-finger nucleases (ZFNs) have been used for genome engineering in a wide variety of organisms; however, it remains challenging to design effective ZFNs for many genomic sequences using publicly available zinc-finger modules. This limitation is in part because of potential finger-finger incompatibility generated on assembly of modules into zinc-finger(More)
Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to(More)