Learn More
To obtain an efficient ethanologenic Escherichia coli strain, we reduced the functional space of the central metabolic network, with eight gene knockout mutations, from over 15,000 pathway possibilities to 6 pathway options that support cell function. The remaining pathways, identified by elementary mode analysis, consist of four pathways with(More)
Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol.(More)
Biodiesels in the form of fatty acyl ethyl esters (FAEEs) are a promising next generation biofuel due to their chemical properties and compatibility with existing infrastructure. It has recently been shown that expression of a bacterial acyl-transferase in the established industrial workhorse Saccharomyces cerevisiae can lead to production of FAEEs by(More)
Identifying multiple enzyme targets for metabolic engineering is very critical for redirecting cellular metabolism to achieve desirable phenotypes, e.g., overproduction of a target chemical. The challenge is to determine which enzymes and how much of these enzymes should be manipulated by adding, deleting, under-, and/or over-expressing associated genes. In(More)
Elementary mode analysis is a useful metabolic pathway analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal(More)
Inverse metabolic engineering based on elementary mode analysis was applied to maximize the biomass yield of Escherchia coli MG1655. Elementary mode analysis was previously employed to identify among 1691 possible pathways for cell growth the most efficient pathway with maximum biomass yield. The metabolic network analysis predicted that deletion of only 6(More)
Based on elementary mode analysis, an Escherichia coli strain was designed for efficient conversion of glycerol to ethanol. By using nine gene knockout mutations, the functional space of the central metabolism of E. coli was reduced from over 15,000 possible pathways to a total of 28 glycerol-utilizing pathways that support cell function. Among these(More)
The metabolism of a cell can be viewed as a weighted sum of elementary modes. Due to the multiplicity of modes the identification of the individual weights represents a non-trivial problem. To enable the determination of weighting factors we have identified and implemented two gene deletions in combination with defined growth conditions that limit the(More)
We applied elementary mode analysis to a recombinant metabolic network of carotenoid-producing E. coli in order to identify multiple-gene knockouts for an enhanced synthesis of the carotenoids diapolycopendial (DPL) and diapolycopendioic acid (DPA). Based on the model, all inefficient carotenoid biosynthesis pathways were eliminated in a strain containing a(More)
The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly(More)