Concita Sibilia

Learn More
An extension of the second quantization scheme based on the quasinormal-modes theory to one-dimensional photonic band gap (PBG) structures is discussed. Such structures, treated as double open optical cavities, are studied as part of a compound closed system including the electromagnetic radiative external bath. The electromagnetic field inside the photonic(More)
We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying(More)
Strong chiroptical effects recently reported result from the interaction of light with chiral plasmonic nanostructures. Such nanostructures can be used to enhance the chiroptical response of chiral molecules and could also significantly increase the enantiomeric excess of direct asymmetric synthesis and catalysis. Moreover, in optical metamaterials,(More)
The spectral transmission properties of a self-similar optical Fabry-Perot resonator are theoretically studied. The structure considered can be realized by alternation of two dielectric layers of different refractive indices such that the highest refractive-index layers belong to a triadic Cantor set. The transmission spectrum exhibits localized peaks(More)
We explore a new passive optical limiter design using transverse modulation instability in the one-dimensional photonic crystal (PC) using x(3) materials. The performance of PC optical limiters strongly depends on the choice of the materials and the geometry and it improves as the duration of the incident pulse is extended. PC optical limiter performance is(More)
Using the concept of an effective medium, we derive coupled mode equations for nonlinear quadratic interactions in photonic band gap structures of finite length. The resulting equations reveal the essential roles played by the density of modes and effective phase matching conditions necessary for the strong enhancement of the nonlinear response. Our(More)
Modeling of a waveguide polymer electrooptic (EO) modulator based on a resonant excitation of surface plasmons was used as a benchmark test for several beam propagation methods (BPM’s). Wave-optical analysis of the structure is presented, and the results of four implementations of three numerical modeling methods are mutually compared and discussed.
Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we(More)
We have analyzed the notions of group velocity V(g) and energy velocity V(E) for light pulses propagating inside one-dimensional photonic band gap structures of finite length. We find that the two velocities are related through the transmission coefficient t as V(E)=/t/(2)V(g). It follows that V(E)=V(g) only when the transmittance is unity (/t/(2)=1). This(More)