Concepción García-Gómez

Learn More
The interactions and relevance of the soil (total and available) concentrations, accumulation, and acute toxicity of several essential and non-essential trace elements were investigated to determine their importance in environmental soil assessment. Three plant species (T. aestivum, R. sativum, and V. sativa) and E. fetida were simultaneously exposed for 21(More)
Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this(More)
This paper describes a new methodology for assessing site-specific environmental impact of contaminants. The proposed method integrates traditional risk assessment approaches with real and variable environmental characteristics at a local scale. Environmental impact on selected receptors was classified for each environmental compartment into 5 categories(More)
This research reports the risk assessment of an abandoned pyrite mine using direct toxicity assays of soil and groundwater samples taken at the site. The toxicity of As and heavy metals from mining soils to soil and aquatic organisms was studied using the Multispecies Soil System (MS-3) in soil columns. Ecotoxicological assessment was performed with soil(More)
In this study, we evaluated the antioxidant responses of wheat and maize growing in Zn-treated soils (200, 450 and 900 mg kg(-1)) at different exposure times (7, 14, 21 and 35 days). The Zn concentration in the plants increased with an increase in the Zn concentration in the soil, thereby causing an increase in the accumulation of Mg and Mn. The emergence(More)
The present study assessed the uptake and toxicity of ZnO nanoparticles (NPs), ZnO bulk, and ZnCl₂ salt in earthworms in spiked agricultural soils. In addition, the toxicity of aqueous extracts to Daphnia magna and Chlorella vulgaris was analyzed to determine the risk of these soils to the aquatic compartment. We then investigated the distribution of Zn in(More)
To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant(More)
This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1).(More)
The objective of this work was to evaluate the ecotoxicological qualitative risk associated with the use of sewage sludge containing Zn oxide nanoparticles (ZnO-NPs) as soil amendment. A sludge-untreated soil and two sludge-treated soils were spiked with ZnO-NPs (0-1,000 mg/kg soil). Soil ecotoxicity was assessed with Eisenia fetida (acute and sublethal end(More)
The presence of toxic metals on paper pulp and the migration of these metals to food from the food package is receiving significant attention. The final exposure levels for consumers depend on two main processes. First the potential of metals to bind paper pulp during manufacture. Second, the metal potential to migrate from paper to food during storage and(More)