Colombe Chappey

Learn More
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B(More)
Most human immunodeficiency virus type 1 (HIV-1) strains require either the CXCR4 or CCR5 chemokine receptor to efficiently enter cells. Blocking viral binding to these coreceptors is an attractive therapeutic target. Currently, several coreceptor antagonists are being evaluated in clinical trials that require characterization of coreceptor tropism for(More)
Reproductive strategies such as sexual reproduction and recombination that involve the shuffling of parental genomes for the production of offspring are ubiquitous in nature. However, their evolutionary benefit remains unclear. Many theories have identified potential benefits, but progress is hampered by the scarcity of relevant data. One class of theories(More)
The human immunodeficiency virus type 1 (HIV-1) sequences from variable region 3 (V3) of the envelope gene were analyzed from seven infected mother-infant pairs following perinatal transmission. The V3 region sequences directly derived from the DNA of the uncultured peripheral blood mononuclear cells from infected mothers displayed a heterogeneous(More)
HIV type 1 (HIV-1) can rapidly escape from neutralizing antibody responses. The genetic basis of this escape in vivo is poorly understood. We compared the pattern of evolution of the HIV-1 env gene between individuals with recent HIV infection whose virus exhibited either a low or a high rate of escape from neutralizing antibody responses. We demonstrate(More)
The development of a quantitative understanding of viral evolution and the fitness landscape in HIV-1 drug resistance is a formidable challenge given the large number of available drugs and drug resistance mutations. We analyzed a dataset measuring the in vitro fitness of 70,081 virus samples isolated from HIV-1 subtype B infected individuals undergoing(More)
The Genotyping tool at the National Center for Biotechnology Information is a web-based program that identifies the genotype (or subtype) of recombinant or non-recombinant viral nucleotide sequences. It works by using BLAST to compare a query sequence to a set of reference sequences for known genotypes. Predefined reference genotypes exist for three major(More)
We analyzed neutralization sensitivity and genetic variation of transmitted subtype B human immunodeficiency virus type 1 (HIV-1) in eight recently infected men who have sex with men and the virus from the six subjects who infected them. In contrast to reports of heterosexual transmission of subtype C HIV-1, in which the transmitted virus appears to be more(More)
Three-dimensional structures are now known within most protein families and it is likely, when searching a sequence database, that one will identify a homolog of known structure. The goal of Entrez's 3D-structure database is to make structure information and the functional annotation it can provide easily accessible to molecular biologists. To this end,(More)