#### Filter Results:

- Full text PDF available (9)

#### Publication Year

1981

2013

- This year (0)
- Last 5 years (1)
- Last 10 years (6)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Colm Ó'Dúnlaing, Chee-Keng Yap
- J. Algorithms
- 1985

- Alok Aggarwal, Bernard Chazelle, Leonidas J. Guibas, Colm Ó'Dúnlaing, Chee-Keng Yap
- Algorithmica
- 1985

We present efficient parallel algorithms for several basic problems in computational geometry: convex hulls, Voronoi diagrams, detecting line segment intersections, triangulating simple polygons, minimizing a circumscribing triangle, and recursive data-structures for three-dimensional queries.

- Colm Ó'Dúnlaing, Micha Sharir, Chee-Keng Yap
- STOC
- 1983

The two-dimensional <underline>Movers' Problem</underline> may be stated as follows: Given a set of polygonal obstacles in the plane, and a two-dimensional robot system B, determine whether one can move B from a given placement to another without touching any obstacle, and plan such a motion when one exists. Efficient algorithms are presented for the two… (More)

- Richard Cole, Michael T. Goodrich, Colm Ó'Dúnlaing
- ICALP
- 1990

- Colm Ó'Dúnlaing
- Algorithmica
- 1987

A bodyB must move from a placementZ 0 to a placementZ 1, while avoiding collision with a setS of moving obstacles. The motion must satisfy an inertial constraint: the acceleration cannot exceed a given boundM. The problem is analyzed, and polynomial-time motion-planning algorithms are given for the case of a particle moving in one dimension.

- Ronald V. Book, Colm Ó'Dúnlaing
- Theor. Comput. Sci.
- 1981

- Colm Ó'Dúnlaing, Micha Sharir, Chee-Keng Yap
- Algorithmica
- 1987

We present a collection of algorithms, all running in timeO(n 2 logn α (n) o(α(n)3)) for some fixed integers(where α(n) is the inverse Ackermann's function), for constructing a skeleton representation of a suitably generalized “Voronoi diagram” for a ladder moving in a two-dimensional space bounded by polygonal barriers consisting ofn line segments. This… (More)

- Colm Ó'Dúnlaing
- Theor. Comput. Sci.
- 1983

- Colm Ó'Dúnlaing
- Theor. Comput. Sci.
- 1983

- Colm Ó'Dúnlaing
- 1981