Collin J. Delker

Learn More
field effect transistors Suprem R. Das, Collin J. Delker, Dmitri Zakharov, Yong P. Chen, Timothy D. Sands, and David B. Janes Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA School of Materials Engineering, Purdue University,(More)
Semiconductor nanowires have been explored as alternative electronic materials for high performance device applications exhibiting low power consumption specs. Electrical transport in III-V nanowire (NW) field-effect transistors (FETs) is frequently governed by Schottky barriers between the source/drain and the NW channel. Consequently the device(More)
In(2)O(3) nanowire transistors are fabricated with and without oxygen plasma exposure of various regions of the nanowire. In two-terminal devices, exposure of the channel region results in an increased conductance of the channel region. For In(2)O(3) nanowire transistors in which the source/drain regions are exposed to oxygen plasma, the mobility, on-off(More)
1/f noise is studied in dual-gated InAs nanowire transistors consisting of an omega top gate with high-k atomic layer deposited dielectric and silicon dioxide to substrate back gate. Noise spectra at varying gate bias combinations are compared from devices with differing top-gate lengths to separate the noise contributions of the top-gated channel from the(More)
Nanowire transistors are typically fabricated as geometrically symmetrical devices, with metal/semiconductor source and drain contacts rather than a graduated doping profile. While the source and drain contacts are nominally identical, contact asymmetry can arise when the gate contact is not centered over the nanowire, leaving uneven access regions with no(More)
We investigate carrier transport in silicon-germanium nanowires with an axial p-n junction doping profile by fabricating these wires into transistors that feature separate top gates over each doping segment. By independently biasing each gate, carriers in the n- and p-side of the wire can be modulated. For these devices, which were fabricated with nickel(More)
Nanowire transistors are promising candidates for future electronics applications; however, they generally exhibit higher levels of low-frequency noise compared with traditional MOSFETs. The physics of this noise generation in nanowires needs to be understood for improving the device performance. In this paper, the low-frequency noise in InAs nanowire(More)
  • 1