Colleen M. Croniger

Learn More
Genome sequences are essential tools for comparative and mutational analyses. Here we present the short read sequence of mouse chromosome 17 from the Mus musculus domesticus derived strain A/J, and the Mus musculus castaneus derived strain CAST/Ei. We describe approaches for the accurate identification of nucleotide and structural variation in the genomes(More)
Discovery of genes that confer resistance to diseases such as diet-induced obesity could have tremendous therapeutic impact. We previously demonstrated that the C57BL/6J-Chr(A/J)/NaJ panel of chromosome substitution strains (CSSs) is a unique model for studying resistance to diet-induced obesity. In the present study, three replicate CSS surveys showed(More)
Retinoic acid (RA) protects mice from diet-induced obesity. The activity is mediated in part through activation of the nuclear receptors RA receptors (RARs) and peroxisome proliferator-activated receptor β/δ and their associated binding proteins cellular RA binding protein type II (CRABP-II) and fatty acid binding protein type 5 in adipocytes and skeletal(More)
Despite considerable effort, the identification of genes that regulate complex multigenic traits such as obesity has proven difficult with conventional methodologies. The use of a chromosome substitution strain-based mapping strategy based on deep congenic analysis overcame many of the difficulties associated with gene discovery and led to the finding that(More)
Alcoholic liver disease (ALD) is characterized by increased hepatic lipid accumulation (steatosis) and inflammation with increased expression of proinflammatory cytokines. Two of these cytokines, interleukin-1 β (IL-1 β ) and IL-18, require activation of caspase-1 via members of the NOD-like receptor (NLR) family. These NLRs form an inflammasome that is(More)
Obesity is a risk factor for many human diseases. However, the underlying molecular causes of obesity are not well understood. Here, we report that protein tyrosine phosphatase receptor T (PTPRT) knockout mice are resistant to high-fat diet-induced obesity. Those mice avoid many deleterious side effects of high-fat diet-induced obesity, displaying improved(More)
BACKGROUND/OBJECTIVES Both genetic and dietary factors contribute to the metabolic syndrome (MetS) in humans and animal models. Characterizing their individual roles as well as relationships among these factors is critical for understanding MetS pathogenesis and developing effective therapies. By studying phenotypic responsiveness to high-risk versus(More)
TThe molecular mechanisms responsible for the development of hepatic fibrosis are not fully understood. The Nlrc4 inflammasome detects cytosolic presence of bacterial components, activating inflammatory cytokines to facilitate clearance of pathogens and infected cells. We hypothesized that low-grade constitutive activation of the Nlrc4 inflammasome may lead(More)
The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased(More)
Metabolic Syndrome, a pathological condition affecting approximately 35% of the USA population, is characterized by obesity, insulin resistance, and hypertension. Metabolic syndrome is considered the single most common condition predisposing to the development of various chronic diseases including diabetes and hypertension. Hypomagnesaemia has been(More)