Learn More
Violet-blue light is toxic to mammalian cells, and this toxicity has been linked with cellular production of H2O2. In this report, we show that violet-blue light, as well as UVA, stimulated H2O2 production in cultured mouse, monkey, and human cells. We found that H2O2 originated in peroxisomes and mitochondria, and it was enhanced in cells overexpressing(More)
The mechanism by which epithelial cells rearrange is a process that is central to epithelial morphogenesis, yet remains poorly understood. We have investigated epithelial cell rearrangement in the dorsal hypodermis of the Caenorhabditis elegans embryo, in which two rows of epithelial cells rearrange in a morphogenetic process known as dorsal intercalation.(More)
We have used transmission electron microscopy to examine plasmodesmata of the charophycean green alga Chara zeylanica, and of the putatively early divergent bryophytes Monoclea gottschei (liverwort), Notothylas orbicularis (hornwort), and Sphagnum fimbriatum (moss), in an attempt to learn when seed plant plasmodesmata may have originated. The three(More)
The molecular quantum defect orbital (MQDO) method, previously used in the determination of molecular photoionization cross sections, is applied here to calculate the angular distribution of photoelectrons arising from the molecular photoionization. Calculations are performed for the ionization from outer valence orbitals of HF, H(2)O, NH(3), N(2)O, and(More)
Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60(More)
Vertical excitation energies belonging to some different Rydberg series of hydrogen chloride have been determined with a coupled-cluster theoretical approach. These excitation energies have allowed us to calculate electric dipole transition intensities in HCl and allow additional assessment of the calculation approach presently used to provide an adequate(More)
The aim of the present theoretical work is to provide data necessary for a better understanding of the electronic spectrum of the silane molecule, which is affected by the Jahn-Teller effect. By selecting an adequate distorted C(2v) geometry of SiH(4), the three lower Koopmans ionization potentials are evaluated with the equation of motion coupled cluster(More)
Theoretical absorption oscillator strengths for transitions involving Rydberg states in molecular formaldehyde as well as cross sections for photoionization Rydberg channels associated with the production of the lowest parent ion electronic state are reported. The calculations have been performed with the molecular quantum defect orbital (MQDO) method. A(More)
Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3(+) and SiH3(+). Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect(More)
Photoionization cross sections for various Rydberg series that correspond to ionization channels of ammonium and oxonium Rydberg radicals from the outermost, occupied orbitals of their respective ground states are reported. These properties are known to be relevant in photoelectron dynamics studies. For the present calculations, the molecular-adapted(More)