Colleen Cassady St Clair

Learn More
A large number of empirical studies have attributed Lévy search patterns to the foraging movements of animals. Typically, this is done by fitting a power-law distribution with an exponent of 1 < mu < or = 3 to the observed step lengths. Most studies record the animal's location at equally spaced time intervals, which are sometimes significantly longer than(More)
Animals regularly integrate information about the location of resources and the presence of competitors, altering their foraging behavior accordingly. We studied the annual plant Abutilon theophrasti to determine whether a plant can demonstrate a similarly complex response to two conditions: presence of a competitor and heterogeneous resource distributions.(More)
One potential contributor to the worldwide decline of bird populations is the increasing prevalence of roads, which have several negative effects on birds and other vertebrates. We synthesized the results of studies and reviews that explore the effects of roads on birds with an emphasis on paved roads. The well-known direct effects of roads on birds include(More)
Rates of encounters between humans and wildlife are increasing in cities around the world, especially when wildlife overlap with people in time, space and resources. Coyotes (Canis latrans) can make use of anthropogenic resources and reported rates of conflict have increased in cities across North America. This increase may be linked to individual(More)
Riparian corridors and fencerows are hypothesized to increase the persistence of forest animals in fragmented landscapes by facilitating movement among suitable habitat patches. This function may be critically important for forest birds, which have declined dramatically in fragmented habitats. Unfortunately, direct evidence of corridor use has been(More)
Many authors assert that plants exhibit complex behaviours which are analogous to animal behaviour. However, plant ecologists rarely root these studies in a conceptual foundation as fertile as that used by animal behaviourists. Here we adapt the optimality principles that facilitated numerous advances in the study of animal foraging behaviour to create one(More)
The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect(More)
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers(More)
Many animal populations are in decline as a result of human activity. Conservation practitioners are attempting to prevent further declines and loss of biodiversity as well as to facilitate recovery of endangered species, and they often rely on interdisciplinary approaches to generate conservation solutions. Two recent interfaces in conservation science(More)
More humans reside in urban areas than at any other time in history. Protected urban green spaces and transportation greenbelts support many species, but diversity in these areas is generally lower than in undeveloped landscapes. Habitat degradation and fragmentation contribute to lowered diversity and urban homogenization, but less is known about the role(More)