Learn More
After traumatic CNS injury, a cascade of secondary events expands the initial lesion. The gap-junction protein connexin43 (Cx43), which is transiently up-regulated, has been implicated in the spread of 'bystander' damage. We have used an antisense oligodeoxynucleotide (asODN) to suppress Cx43 up-regulation in two rat models of spinal cord injury. Within 24(More)
BACKGROUND Research on the relationship between Health Related Quality of Life (HRQoL) and physical activity (PA), to date, have rarely investigated how this relationship differ across objective and subjective measures of PA. The aim of this paper is to explore the relationship between HRQoL and PA, and examine how this relationship differs across objective(More)
Confocal microscopy enables constitutive elements of cells and tissues to be viewed at high resolution and reconstructed in three dimensions, but is constrained by the limited extent of the volumes that can be imaged. We have developed an automated technique that enables serial confocal images to be acquired over large tissue areas and volumes. The(More)
Gap junctions are specialized cell-to-cell contacts that provide direct intercellular communication. In the central nervous system (CNS), gap junction coupling occurs between both neurons and glial cells. One of the most abundant gap junction proteins in the CNS is connexin43 (Cx43). The functional syncytium formed by astrocytes via Cx43 gap junction(More)
Following brain injury, and during the process of neurodegeneration, a reactive astrocytic proliferation occurs. This is accompanied by an increase in the synthesis of neuropeptides, cytokines, growth factors and glial fibrillary acidic protein (GFAP), a cell-specific marker for reactive astrocytes. Astrocytes are extensively coupled by gap junctions of the(More)
The repair of tissue damage is a key survival process in all organisms and involves the coordinated activation of several cell types. Cell-cell communication is clearly fundamental to this process, and a great deal is known about extracellular communication within the wound site via cytokines. Here we show that direct cell-cell communication through(More)
In Huntington's diseased human brain, it is in the caudate nucleus (CN) and globus pallidus (GP) of the basal ganglia where nerve cell death is seen most dramatically. The distribution of five gap junction proteins (connexins 26, 32, 40, 43 and 50) has been examined in these areas in normal and Huntington's diseased human brain using immunohistochemical(More)
Some vertebrates can navigate over long distances using the Earth's magnetic field, but the sensory system that they use to do so has remained a mystery. Here we describe the key components of a magnetic sense underpinning this navigational ability in a single species, the rainbow trout (Oncorhynchus mykiss). We report behavioural and electrophysiological(More)
Cardiomyocytes form a conducting network that is assumed to be electrically isolated from nonmyocytes in vivo. In cell culture, however, cardiac fibroblasts can contribute to the spread of excitation via functional gap junctions with cardiomyocytes. To assess the ability of fibroblasts to form gap junctions in vivo, we combine in situ detection of connexins(More)
PURPOSE Gap junctions play a major role in corneal wound healing. This study used reproducible models of corneal wound healing to evaluate the effect of a gap junction channel modulator, connexin43 (Cx43) antisense oligodeoxynucleotides (AsODN), on corneal healing dynamics. METHODS A mechanical scrape wound model was used to evaluate Cx43 AsODN(More)