Colin R. Thomas

Learn More
Based on two staining protocols, DiOC(6)(3)/propidium iodide (PI) and RedoxSensor Green (an indicator of bacterial reductase activity)/PI, multi-parameter flow cytometry and cell sorting has identified at least four distinguishable physiological states during batch cultures of Bacillus cereus. Furthermore, dependent on the position in the growth curve,(More)
Information about the bursting strength of animal cells is essential if the mechanisms of cell damage in bioreactors are to be understood, and if cell mechanical properties are ever to be related to cell structure and physiology. We have developed a novel cell compression technique that makes it possible to directly measure the bursting strength of single(More)
Multi-parameter ow cytometry and cell sorting reveal extensive physiological heterogeneity in Bacillus cereus batch cultures. physiological heterogeneity in Bacillus cereus batch cultures. Keywords: bacteria, flow cytometry, membrane potential, membrane integrity, propidium iodide, 3,3'-dihexylocarbocyanine iodide, bis-(1, 3-dibutylbarbituric acid)(More)
The elastic modulus of the Baker’s yeast (Saccharomyces cerevisiae) cell wall reported in studies using atomic force microscopy (AFM) is two orders of magnitude lower than that obtained using whole cell compression by micromanipulation. Using finite element modelling, it is shown that Hertz-Sneddon analysis cannot be applied to AFM indentation data for(More)
Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80,(More)
  • 1