Colin Preston

Learn More
Renewable and clean "green" electronics based on paper substrates is an emerging field with intensifying research and commercial interests, as the technology combines the unique properties of flexibility, cost efficiency, recyclability, and renewability with the lightweight nature of paper. Because of its excellent optical transmittance and low surface(More)
Solar cell substrates require high optical transparency but also prefer high optical haze to increase the light scattering and consequently the absorption in the active materials. Unfortunately, there is a trade-off between these optical properties, which is exemplified by common transparent paper substrates exhibiting a transparency of about 90% yet a low(More)
We have measured the decay of chlorophyll a fluorescence at 4 degrees C under anaerobic conditions in stabilized photosystem II reaction center complex isolated from spinach, using multifrequency (2-400 MHz) cross-correlation phase fluorometry. Examination of our data shows that although the fluorescence decay of open reaction centers (i.e., when both the(More)
In this study we report a novel, rationally designed, solution based silver nanowire (Ag NW) paper hybrid that demonstrates a flexible, low cost, and scalable device ready transparent conducting electrode (TCE) with exceptional and stable optoelectronic properties. Its high transmittance (91%) and low sheet resistance (13 U sq À1) represent the highest(More)
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680(+)) and the reduced electron acceptor pheophytin a (-) (Pheo a (-)) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a(More)
Contemporary nanostructured transparent electrodes for use in solar cells require high transmittance and high conductivity, dictating nanostructures with high aspect ratios. Optical haze is an equally important yet unstudied parameter in transparent electrodes for solar cells that is also determined by the geometry of the nanostructures that compose the(More)
Electrode materials with high specific surface area (area per volume or weight) and high conductivity are crucial for high power generation in microbial fuel cells (MFCs). In this paper, a novel hollow natural fiber template (kapok) is introduced to serve as the MFC anode. Advanced microscopy shows that the unique hollow structure doubles the anode active(More)
Nanopaper based on biodegradable cellulose fi bers with tailorable optical properties shows a strong dependence on the cellulose fi ber diameter and packing density. The optical properties are thoroughly explained through Chandrasekhar radiative-transfer theory and multiple scattering method simulations. The controllable optical properties of the highly(More)
In this manuscript, we develop printable graphene ink through a solvent-exchange method. Printable graphene ink in ethanol and water free of any surfactant is dependent on matching the surface tension of the cross-solvent with the graphene surface energy. Percolative transport behavior is observed for films made of this printable ink. Optical conductivity(More)
The ability to manage the light scattering effect of transparent paper without sacrificing its original high transmittance is critical for the application in optoelectronics since different devices have different requirements for the optical properties. In this paper, we study highly transparent paper with a tunable transmission haze by rationally managing(More)