Learn More
C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This(More)
The C4 photosynthetic pathway uses water more efficiently than the C3 type, yet biogeographical analyses show a decline in C4 species relative to C3 species with decreasing rainfall. To investigate this paradox, the hypothesis that the C4 advantage over C3 photosynthesis is diminished by drought was tested, and the underlying stomatal and metabolic(More)
Many questions in evolutionary biology require an estimate of divergence times but, for groups with a sparse fossil record, such estimates rely heavily on molecular dating methods. The accuracy of these methods depends on both an adequate underlying model and the appropriate implementation of fossil evidence as calibration points. We explore the effect of(More)
Experimental evidence demonstrates a higher efficiency of water and nitrogen use in C(4) compared with C(3) plants, which is hypothesized to drive differences in biomass allocation between C(3) and C(4) species. However, recent work shows that contrasts between C(3) and C(4) grasses may be misinterpreted without phylogenetic control. Here, we compared leaf(More)
C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative(More)
CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with(More)
Plants with the C4 photosynthetic pathway dominate today's tropical savannahs and grasslands, and account for some 30% of global terrestrial carbon fixation. Their success stems from a physiological CO2-concentrating pump, which leads to high photosynthetic efficiency in warm climates and low atmospheric CO2 concentrations. Remarkably, their dominance of(More)
C(4) photosynthesis is a series of anatomical and biochemical modifications to the typical C(3) pathway that increases the productivity of plants in warm, sunny, and dry conditions. Despite its complexity, it evolved more than 62 times independently in flowering plants. However, C(4) origins are absent from most plant lineages and clustered in others,(More)
The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of(More)
C(4) photosynthesis is a complex trait that confers higher productivity under warm and arid conditions. It has evolved more than 60 times via the co-option of genes present in C(3) ancestors followed by alteration of the patterns and levels of expression and adaptive changes in the coding sequences, but the evolutionary path to C(4) photosynthesis is still(More)