Colin G N Turnbull

Learn More
In plants, seasonal changes in day length are perceived in leaves, which initiate long-distance signaling that induces flowering at the shoot apex. The identity of the long-distance signal has yet to be determined. In Arabidopsis, activation of FLOWERING LOCUS T (FT) transcription in leaf vascular tissue (phloem) induces flowering. We found that FT(More)
The plant shoot body plan is highly variable, depending on the degree of branching. Characterization of the max1-max4 mutants of Arabidopsis demonstrates that branching is regulated by at least one carotenoid-derived hormone. Here we show that all four MAX genes act in a single pathway, with MAX1, MAX3, and MAX4 acting in hormone synthesis, and MAX2 acting(More)
Flower development at the shoot apex is initiated in response to environmental cues. Day length is one of the most important of these and is perceived in the leaves. A systemic signal, called the floral stimulus or florigen, is then transmitted from the leaves through the phloem and induces floral development at the shoot apex. Genetic analysis in(More)
In the absence of adaptive immunity displayed by animals, plants respond locally to biotic challenge via inducible basal defense networks activated through recognition and response to conserved pathogen-associated molecular patterns. In addition, immunity can be induced in tissues remote from infection sites by systemic acquired resistance (SAR), initiated(More)
Grafting in species other than Arabidopsis has generated persuasive evidence for long-distance signals involved in many plant processes, including regulation of flowering time and shoot branching. Hitherto, such approaches in Arabidopsis have been hampered by the lack of suitable grafting techniques. Here, a range of micrografting methods for young(More)
The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of(More)
Carotenoid pigments are critical for plant survival, and carotenoid composition is tuned to the developmental stage, tissue, and to environmental stimuli. We report the cloning of the CAROTENOID CHLOROPLAST REGULATORY1 (CCR1) gene. The ccr1 mutant has increased shoot branching and altered carotenoid composition, namely, reduced lutein in leaves and(More)
The fifth increased branching ramosus (rms) mutant, rms5, from pea (Pisum sativum), is described here for phenotype and grafting responses with four other rms mutants. Xylem sap zeatin riboside concentration and shoot auxin levels in rms5 plants have also been compared with rms1 and wild type (WT). Rms1 and Rms5 appear to act closely at the biochemical or(More)
The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts(More)