Learn More
There has been a proliferation of recent work on SMT tuning algorithms capable of handling larger feature sets than the traditional MERT approach. We analyze a number of these algorithms in terms of their sentence-level loss functions, which motivates several new approaches, including a Structured SVM. We perform empirical comparisons of eight different(More)
We describe a novel approach to statistical machine translation that combines syntactic information in the source language with recent advances in phrasal translation. This method requires a source-language dependency parser, target language word segmentation and an unsupervised word alignment component. We align a parallel corpus, project the source(More)
We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential behaviour of these acts, the learned model can provide insight into the shape of communication in a(More)
Morphological segmentation breaks words into morphemes (the basic semantic units). It is a key component for natural language processing systems. Unsupervised morphological segmentation is attractive, because in every language there are virtually unlimited supplies of text, but very few labeled resources. However, most existing model-based systems for(More)
OBJECTIVE As clinical text mining continues to mature, its potential as an enabling technology for innovations in patient care and clinical research is becoming a reality. A critical part of that process is rigid benchmark testing of natural language processing methods on realistic clinical narrative. In this paper, the authors describe the design and(More)
ABRAMSON Information theory and coding BATTIN Astronautical guidance BLACHMAN Noise and its effect on communication BREMER Superconductive devices BROXMEYER Inertial navigation systems GELB AND VANDER VELDE Multiple-input describing functions and nonlinear system design GILL Introduction to the theory of finite-state machines HANCOCK AND WINTZ Signal(More)
We present a discriminative structure-prediction model for the letter-to-phoneme task, a crucial step in text-to-speech processing. Our method encompasses three tasks that have been previously handled separately: input segmentation, phoneme prediction, and sequence modeling. The key idea is online discriminative training, which updates parameters according(More)