Learn More
We study the memory requirements of self-stabilizing leader election (SSLE) protocols. We are mainly interested in two types of systems: anonymous systems and id-based systems. We consider two classes of protocols: deterministic ones and randomized ones. We prove that a non-constant lower bound on the memory space is required by a SSLE protocol on(More)
We propose a self-stabilizing probabilistic solution for the neighborhood unique naming problem in uniform, anonymous networks with arbitrary topology. This problem is important in the graph theory Our solution stabilizes under the unfair distributed scheduler. We prove that this solution needs in average only one trial per processor. We use our algorithm(More)
We present a self-stabilizing token circulation protocol on unidirectional anonymous rings. This protocol does not required processor identifiers, no distinguished processor (i.e. all processors perform the same algorithm). The protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration (in response to an arbitrary(More)
We present a deterministic distributed depth-rst token passing protocol on a rooted network. This protocol uses neither the processor identiiers nor the size of the network, but assumes the existence of a distinguises hed processor, called the root of the network. The protocol is self-stabilizing, meaning that starting from an arbitrary state (in response(More)
We present a deterministic distributed depth-rst token passing protocol on a rooted network. This protocol does not use either the processor identiiers or the size of the network, but assumes the existence of a distinguished processor, called the root of the network. The protocol is self-stabilizing, meaning that starting from an arbitrary state (in(More)
We study a special type of self-stabilizing algorithms composition : the cross-over composition (AB). The cross-over composition is the generalization of the algorithm compiler idea introduced in [3]. The cross-over composition could be seen as a black box with two entries and one exit. The composition goal is to improve the qualities of the first algorithm(More)
Ad hoc sensor networks consist of large number of wireless sensors that communicate with each other in the absence of a xed infrastructure. Fast self-reconguration and power eciency are very important property on any sensor network management. The clustering problem consists in partitioning network nodes into groups called clusters, thus giving at the(More)