Learn More
The effects of melatonin on circadian pacemaker activity in the central nervous system may be the result of melatonin receptor activation of G-protein coupled potassium channels which inhibit the action potential firing of neurons. Xenopus laevis and human1a melatonin receptors stimulated heteromeric G-protein activated inwardly rectifying potassium(More)
Neurons in the suprachiasmatic nucleus (SCN) constitute the principal circadian pacemaker of mammals. In situ hybridization studies revealed expression of orphanin-FQ/nociceptin (OFQ/N) receptor (NOR) mRNA in the SCN, whereas no expression of mRNA for preproOFQ/N (ppOFQ/N) was detected. The presence of OFQ/N peptide in the SCN was demonstrated by(More)
Whole-cell voltage-clamp recordings were made from suprachiasmatic nucleus (SCN) neurons maintained in horizontal brain slices. The majority of neurons exhibited spontaneous and evoked excitatory and inhibitory synaptic currents (EPSC and IPSC), mediated by glutamate and GABA respectively. Melatonin had no effect on either the spontaneous or evoked EPSC or(More)
The potency of Pb2+ inhibition of glutamate-activated currents mediated by N-methyl-D-aspartate (NMDA) receptors was dependent on the subunits composing the receptors when functionally expressed in Xenopus laevis oocytes. Pb2+ reduced the amplitudes of glutamate-activated currents and shifted the agonist EC50 values of NMDA receptors consisting of different(More)
Dopamine D2 receptors contain a cluster of serine residues in the fifth transmembrane domain that contribute to activation of the receptor as well as to the binding of agonists. We used rat D2S dopamine receptor mutants, each containing a serine-to-alanine substitution (S193A, S194A, S197A), to investigate the mechanism through which these residues affect(More)
Southern blot analysis of RT-PCR products from brain and heart revealed multiple products for a C-terminal region of Kir3.1. Sequencing yielded clones for wild-type Kir3.1 and three Kir3.1 C-terminal alternative splice variants, including a unique alternative exon. Two of these variants encoded truncated Kir3.1 molecules. Tissue distribution and(More)
Respiratory depression, the most serious side-effect of opioid treatment, is well documented for morphine, the most commonly used opioid in neonatal care. Less is known about methadone, a clinically relevant opioid analgesic, especially during neonatal development. This study was undertaken to determine the neonatal respiratory effects of methadone. We(More)
Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the cellular regulation of guinea pig, human and rat MOP(More)
We analyzed intracellular Ca(2+)and cAMP levels in Chinese hamster ovary cells expressing a cloned rat kappa opioid receptor (CHO-kappa cells). Although expression of kappa(kappa)-opioid receptors was confirmed with a fluorescent dynorphin analog in almost all CHO-kappa cells, the kappa-specific agonists, U50488H or U69593, induced a Ca(2+) transient only(More)
We have used the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel as a model system to study the cAMP signal transduction pathways coupled to the Xenopus melatonin receptor. During forskolin (Fsk) stimulation, melatonin reduced the amplitude of the CFTR currents in oocytes injected with in vitro transcribed cRNAs for the Xenopus(More)
  • 1