Learn More
Viscoelastic properties of wet and dry human compact bone were studied in torsion and in bending for both the longitudinal and transverse directions at frequencies from 5 mHz to 5 kHz in bending to more than 50 kHz in torsion. Two series of tests were done for different longitudinal and transverse specimens from a human tibia. Wet bone exhibited a larger(More)
To explore the hypothesis that load-induced fluid flow in bone is a mechano-transduction mechanism in bone adaptation, unit cell micro-mechanical techniques are used to relate the microstructure of Haversian cortical bone to its effective poroelastic properties. Computational poroelastic models are then applied to compute in vitro Haversian fluid flows in a(More)
Despite its widespread use as graft material in orthopaedic surgical procedures, morselized cancellous bone has not yet been well characterized from the standpoint of its mechanical properties. To accommodate the noncohesive nature of this loose particulate form of bone, a triaxial compression test apparatus commonly used in engineering soil mechanics was(More)
SUMMARY A framework alternative to that of classical slope stability analysis is developed, wherein the soil mass is treated as a continuum and in-situ soil stresses and strengths are computed accurately using inelastic "nite element methods with general constitutive models. Within this framework, two alternative methods of stability analysis are presented.(More)
SUMMARY A formulation for design of continuous, hinge-free compliant mechanisms is developed and examined within a continuum structural topology optimization framework. The formulation makes use of two distinctly different sets of springs, the first of which are artificial springs of relatively large stiffness attached to the input and output ports of the(More)
Joint implant design clearly affects long-term outcome. While many implant designs have been empirically-based, finite element analysis has the potential to identify beneficial and deleterious features prior to clinical trials. Finite element analysis is a powerful analytic tool allowing computation of the stress and strain distribution throughout an(More)
It is considered that asymmetrical material layout design solutions are caused by numerical roundo€ and the convexity characteristics of alternative topology design formulations. Emphasis is placed here not on analyzing potential instabilities that lead to asymmetrical designs, but on a method to stabilize topology design formulations. A novel symmetry(More)
To explore the hypothesis that mechanical excitation-induced fluid flow and/or fluid pressure are potential mechanical transduction mechanisms in bone adaptation, a complementary experimental and analytical modeling effort has been undertaken. Experimentally, viscoelastic tanδ properties of saturated cortical bovine bone were measured in both torsion and(More)
To explore the potential role that load-induced fluid flow plays as a mechano–transduction mechanism in bone adaptation, a lacunar–canalicular scale bone poroelasticity model is developed and implemented. The model uses micromechanics to homogenize the pericanalicular bone matrix, a system of straight circular cylinders in the bone matrix through which bone(More)
The desired results of variable topology material layout computations are stable and discrete material distributions that optimize the performance of structural systems. To achieve such material layout designs a continuous topology design framework based on hybrid combinations of classical Reuss (compliant) and Voigt (stii) mixing rules is investigated. To(More)