Learn More
Potassium leak conductances were recently revealed to exist as independent molecular entities. Here, the genomic structure, cardiac localization, and biophysical properties of a murine example are considered. Kcnk3 subunits have two pore-forming P domains and unique functional attributes. At steady state, Kcnk3 channels behave like open,(More)
Inwardly rectifying K(+) (Kir) channels are important regulators of resting membrane potential and cell excitability. The activity of Kir channels is critically dependent on the integrity of channel interactions with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we identify and characterize channel-PIP(2) interactions that are conserved among Kir(More)
KCNK subunits have two pore-forming P domains and four predicted transmembrane segments. To assess the number of subunits in each pore, we studied external proton block of Kcnk3, a subunit prominent in rodent heart and brain. Consistent with a pore-blocking mechanism, inhibition was dependent on voltage, potassium concentration, and a histidine in the first(More)
BACKGROUND Genotype-phenotype investigations have revealed significantly larger risk for cardiac events in patients with type 1 long-QT syndrome (LQT-1), particularly in adult females, with missense mutation in the cytoplasmic loop (C-loop) regions of the α subunit of the KCNQ1 gene associated with an impaired ion channel activation by adrenergic stimulus.(More)
  • 1