Learn More
LLA23, an abscisic acid-, stress-, and ripening-induced protein, was previously isolated from lily (Lilium longiflorum) pollen. The expression of LLA23 is induced under the application of abscisic acid (ABA), NaCl, or dehydration. To provide evidence on the biological role of LLA23 proteins against drought, we used an overexpression approach in Arabidopsis(More)
RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit(More)
We have isolated the LLA23 gene in the pollen of Lilium longiflorum. The LLA23 gene encodes an ASR (named after abscisic acid, stress and ripening) protein that has a nuclear localization sequence at the C terminus. The gene is interrupted by one single intron and possesses a long 5'-untranslated region. Southern blots of lily genomic DNA indicated that(More)
RNA-directed DNA methylation (RdDM) is a conserved mechanism for epigenetic silencing of transposons and other repetitive elements. We report that the rdm4 (RNA-directed DNA Methylation4) mutation not only impairs RdDM, but also causes pleiotropic developmental defects in Arabidopsis. Both RNA polymerase II (Pol II)- and Pol V-dependent transcripts are(More)
LLA23, a member of the abscisic acid-, stress-, and ripening-induced (ASR) protein family, was previously isolated from lily (Lilium longiflorum) pollen. The lily ASR is induced through desiccation-associated ABA signaling transduction in the pollen. ASRs are highly hydrophilic and intrinsically unstructured proteins with molecular masses generally less(More)
DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of(More)
The lily LLA23 protein is a member of the abscisic acid, stress and ripening-induced (ASR) protein family. Constitutive overexpression of LLA23 under the cauliflower mosaic virus 35S promoter confers cold and freezing tolerance in Arabidopsis. The phenotypical growth and survival percentage of the two transgenic 35S::LLA23 plants showed higher resistance to(More)
We successfully identify anther-specific/predominant genes induced by gibberellin (GA) at the microspore stage of lily (Lilium longiflorum) anthers. We used a suppression-subtractive hybridization strategy to identify 22 individual cDNAs followed by a reverse RNA dot plot to determine their specificities at the microspore stage. Of the 22 genes, 12 are(More)
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired(More)
Two stage-specific genes have been isolated from a subtractive cDNA library constructed from developing anthers of lily (Lilium longiflorum). The proteins encoded by the two genes have a strong hydrophobic region at the N-terminus, indicating the presence of a signal peptide. The deduced LLA-67 is a new type of small cysteine-rich protein whose sequence(More)