Clive W. Lloyd

Learn More
In plants, it is unclear how dispersed cortical microtubules are nucleated, polarized and organized in the absence of centrosomes. In Arabidopsis thaliana cells, expression of a fusion between the microtubule-end-binding protein AtEB1a and green fluorescent protein (GFP) results in labelling of spindle poles, where minus ends gather. During interphase,(More)
We have studied the F-actin network in cycling suspension culture cells of carrot (Daucus carota L.) using rhodaminyl lysine phallotoxin (RLP). In addition to conventional fixation with formaldehyde, we have used two different nonfixation methods before adding RLP: extracting cells in a stabilizing buffer; inducing transient pores in the plasma membrane(More)
The 65-kD microtubule-associated protein (MAP65) family is a family of plant microtubule-bundling proteins. Functional analysis is complicated by the heterogeneity within this family: there are nine MAP65 genes in Arabidopsis thaliana, AtMAP65-1 to AtMAP65-9. To begin the functional dissection of the Arabidopsis MAP65 proteins, we have concentrated on a(More)
In plants, cortical microtubules (MTs) occur in characteristically parallel groups maintained up to one microtubule diameter apart by fine filamentous cross-bridges. However, none of the plant microtubule-associated proteins (MAPs) so far purified accounts for the observed separation between MTs in cells. We previously isolated from carrot cytoskeletons a(More)
Xylem tracheary elements (TEs) form hollow, sap-conducting tubes kept open by thickened ribs of secondary cell wall that provide the major structural element in wood. These ribs are enriched with cellulose and lignin, molecules that utilize more atmospheric CO(2) than any other biopolymer on Earth. The thickenings form characteristic patterns (e.g., spiral(More)
In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a-green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to(More)
In plants there are three microtubule arrays involved in cellular morphogenesis that have no equivalent in animal cells. In animals, microtubules are decorated by another class of proteins - the structural MAPS - which serve to stabilize microtubules and assist in their organization. The best-studied members of this class in plants are the MAP-65 proteins(More)
AtMAP65-1 bundles cortical microtubules and we examined how this property is regulated during division in time-lapse studies of Arabidopsis suspension cells expressing GFP-AtMAP65-1. Spindle fluorescence is diffuse during metaphase, restored to the central spindle at anaphase and then compacted at the midline during late anaphase/early telophase. However,(More)
Plants can grow straight or in the twisted fashion exhibited by the helical growth of some climbing plants. Analysis of helical-growth mutants from Arabidopsis has indicated that microtubules are involved in the expression of the helical phenotype. Arabidopsis mutants growing with a right-handed twist have been reported to have cortical microtubules that(More)
BACKGROUND Cytoplasmic streaming is a conspicuous feature of plant cell behaviour, in which organelles and vesicles shuttle along cytoplasmic strands that contain actin filaments. The mechanisms that regulate streaming and the formation of actin filament networks are largely unknown, but in all likelihood involve actin-binding proteins. The monomeric(More)