Clive Niels Svendsen

Learn More
Spinal muscular atrophy is one of the most common inherited forms of neurological disease leading to infant mortality. Patients have selective loss of lower motor neurons resulting in muscle weakness, paralysis and often death. Although patient fibroblasts have been used extensively to study spinal muscular atrophy, motor neurons have a unique anatomy and(More)
Reactive astrocytes adjacent to a forebrain stab injury were selectively ablated in adult mice expressing HSV-TK from the Gfap promoter by treatment with ganciclovir. Injured tissue that was depleted of GFAP-positive astrocytes exhibited (1) a prolonged 25-fold increase in infiltration of CD45-positive leukocytes, including ultrastructurally identified(More)
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with restorative effects in a wide variety of rodent and primate models of Parkinson disease, but penetration into brain tissue from either the blood or the cerebro-spinal fluid is limited. Here we delivered GDNF directly into the putamen of five Parkinson patients in a phase(More)
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other(More)
Cells isolated from the embryonic, neonatal, and adult rodent central nervous system divide in response to epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-2), while retaining the ability to differentiate into neurons and glia. These cultures can be grown in aggregates termed neurospheres, which contain a heterogeneous mix of both(More)
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by rapid loss of muscle control and eventual paralysis due to the death of large motor neurons in the brain and spinal cord. Growth factors such as glial cell line derived neurotrophic factor (GDNF) are known to protect motor neurons from damage in(More)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of spinal cord, brainstem, and cortical motor neurons. In a minority of patients, the disease is caused by mutations in the copper (2+)/zinc (2+) superoxide dismutase 1 (SOD1) gene. Recent evidence suggests that astrocytes are dysfunctional in ALS and(More)
Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated(More)
Previous studies suggest that a population of precursor cells from the developing and adult mouse striatum can be expanded in culture using serum-free, N2-supplemented medium and mitogenic factors such as epidermal growth factor (EGF). Here we show that EGF-responsive precursor cells from embryonic rat striatum and mesencephalon can also be expanded in(More)
Neural precursor cells were isolated from various regions of the developing rat and human brain and grown in culture as aggregates termed neurospheres. We asked whether cells within human and rodent neurospheres are identical, or whether they have species specific characteristics or differences based on their region of origin. Under our culture conditions,(More)