Clifford J. Unkefer

Learn More
MOTIVATION Stable isotope labeling of small-molecule metabolites (e.g. (13)C-labeling of glucose) is a powerful tool for characterizing pathways and reaction fluxes in a metabolic network. Analysis of isotope labeling patterns requires knowledge of the fates of individual atoms and moieties in reactions, which can be difficult to collect in a useful form(More)
We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are(More)
MOTIVATION Our knowledge of the metabolites in cells and their reactions is far from complete as revealed by metabolomic measurements that detect many more small molecules than are documented in metabolic databases. Here, we develop an approach for predicting the reactivity of small-molecule metabolites in enzyme-catalyzed reactions that combines expert(More)
MOTIVATION Our knowledge of metabolism is far from complete, and the gaps in our knowledge are being revealed by metabolomic detection of small-molecules not previously known to exist in cells. An important challenge is to determine the reactions in which these compounds participate, which can lead to the identification of gene products responsible for(More)
The clustering of genes in a pathway and the co-location of functionally related genes is widely recognized in prokaryotes. We used these characteristics to predict the metabolic involvement for a Transcriptional Regulator (TR) of unknown function, identified and confirmed its biological activity. A software tool that identifies the genes encoded within a(More)
  • 1